Ultrafilters and maximal linked systems
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 365-388
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The family of maximal linked systems all elements of which are sets of an arbitrary lattice with “zero” and “unit” is considered; its subfamily composed of ultrafilters of that lattice is also considered. Relations between natural topologies used to equip the set of maximal linked systems and the set of the lattice ultrafilters are investigated. It is demonstrated that the last set under natural (for ultrafilter spaces) equipment is a subspace of the space of maximal linked systems under equipment with two comparable topologies one of which is similar to the topology used for the Wallman extension and the second corresponds (conceptually) to the scheme of Stone space in the case when the initial lattice is an algebra of sets. Properties of the resulting bitopological structure are detailed for the cases when our lattice is an algebra of sets, a topology, and a family of closed sets in a topological space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
lattice of sets, topology, ultrafilter.
                    
                  
                
                
                @article{VUU_2017_27_3_a6,
     author = {A. G. Chentsov},
     title = {Ultrafilters and maximal linked systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {365--388},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a6/}
}
                      
                      
                    TY - JOUR AU - A. G. Chentsov TI - Ultrafilters and maximal linked systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 365 EP - 388 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a6/ LA - ru ID - VUU_2017_27_3_a6 ER -
A. G. Chentsov. Ultrafilters and maximal linked systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 365-388. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a6/
