Ultrafilters and maximal linked systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 365-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The family of maximal linked systems all elements of which are sets of an arbitrary lattice with “zero” and “unit” is considered; its subfamily composed of ultrafilters of that lattice is also considered. Relations between natural topologies used to equip the set of maximal linked systems and the set of the lattice ultrafilters are investigated. It is demonstrated that the last set under natural (for ultrafilter spaces) equipment is a subspace of the space of maximal linked systems under equipment with two comparable topologies one of which is similar to the topology used for the Wallman extension and the second corresponds (conceptually) to the scheme of Stone space in the case when the initial lattice is an algebra of sets. Properties of the resulting bitopological structure are detailed for the cases when our lattice is an algebra of sets, a topology, and a family of closed sets in a topological space.
Keywords: lattice of sets, topology, ultrafilter.
@article{VUU_2017_27_3_a6,
     author = {A. G. Chentsov},
     title = {Ultrafilters and maximal linked systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {365--388},
     year = {2017},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a6/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Ultrafilters and maximal linked systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 365
EP  - 388
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a6/
LA  - ru
ID  - VUU_2017_27_3_a6
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Ultrafilters and maximal linked systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 365-388
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a6/
%G ru
%F VUU_2017_27_3_a6
A. G. Chentsov. Ultrafilters and maximal linked systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 365-388. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a6/

[1] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90

[2] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977, 238 pp. | MR | Zbl

[3] Fedorchuk V. V., Filippov V. V., General topology. Base constructions, Fizmatlit, M., 2006, 336 pp.

[4] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[5] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 113–142 (in Russian) | DOI

[6] Chentsov A. G., Pytkeev E. G., “Some topological structures of extensions of abstract reachability problems”, Proc. Steklov Inst. Math., 292, suppl. 1 (2016), 36–54 | DOI | MR

[7] Dvalishvili B. P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, Elsevier Science, Amsterdam, 2005, 422 pp. | MR | Zbl

[8] Kuratowski K., Mostowski A., Set theory, PWN, Warsawa, 1968, vii+417 pp. | MR | Zbl

[9] Aleksandrov P. S., Introduction to set theory and general topology, Editorial URSS, M., 2004, 368 pp.

[10] Bourbaki N., Topologie Générale, Hermann, Paris, 1961, 263 pp. | MR

[11] Chentsov A. G., “Attraction sets in abstract attainability problems: equivalent representations and basic properties”, Russian Mathematics, 57:11 (2013), 28–44 | DOI | MR | Zbl

[12] Chentsov A. G., “To question about realization of attraction elements in abstract attainability problems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:2 (2015), 212–229 (in Russian) | DOI | Zbl

[13] Arkhangelskii A. A., “Compactness”, General Topology II, Encyclopaedia Math. Sci., 50, Springer-Verlag, Berlin, 1996, 1–117 | MR

[14] Chentsov A. G., “Some ultrafilter properties connected with extension constructions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 1, 87–101 (in Russian) | DOI

[15] Chentsov A. G., “Superextension as bitopological space”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 49 (2017), 55–79 (in Russian) | DOI