Mots-clés : exact solutions, ODE
@article{VUU_2017_27_3_a5,
author = {L. I. Rubina and O. N. Ul'yanov},
title = {On one approach to solving nonhomogeneous partial differential equations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {355--364},
year = {2017},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a5/}
}
TY - JOUR AU - L. I. Rubina AU - O. N. Ul'yanov TI - On one approach to solving nonhomogeneous partial differential equations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 355 EP - 364 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a5/ LA - ru ID - VUU_2017_27_3_a5 ER -
%0 Journal Article %A L. I. Rubina %A O. N. Ul'yanov %T On one approach to solving nonhomogeneous partial differential equations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 355-364 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a5/ %G ru %F VUU_2017_27_3_a5
L. I. Rubina; O. N. Ul'yanov. On one approach to solving nonhomogeneous partial differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a5/
[1] Starovoitova R. P., Green's functions, Mir, M., 1982, 90 pp.
[2] Cole J. D., Perturbation methods in applied mathematics, Ginn-Blaisdell, London, 1968, 260 pp. | MR | Zbl
[3] Kudryavtsev A. G., Sapozhnikov O. A., “Determination of the exact solutions to the inhomogeneous Burgers equation with the use of the Darboux transformation”, Acoustical Physics, 57:3 (2011), 311–319 | DOI
[4] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear partial differential equations, 2nd ed., Chapman Hall/CRC Press, Boca Raton–London–New York, 2012, 1912 pp. | DOI | MR
[5] Rubina L. I., Ul'yanov O. N., “A geometric method for solving nonlinear partial differential equations”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 209–225 (in Russian)
[6] Rubina L. I., Ul'yanov O. N., “Solution of nonlinear partial differential equations by the geometric method”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 18, no. 2, 2012, 265–280 (in Russian)
[7] Rubina L. I., Ul'yanov O. N., “On some method for solving a nonlinear heat equation”, Sib. Math. J., 53:5 (2012), 872–881 | DOI | MR | Zbl
[8] Rubina L. I., Ul'yanov O. N., “One method for solving systems of nonlinear partial differential equations”, Proc. Steklov Inst. Math., 288, suppl. 1 (2015), 180–188 | DOI | MR
[9] Rubina L. I., Ul'yanov O. N., “On solving certain nonlinear acoustics problems”, Acoustical Physics, 61:5 (2015), 527–533 | DOI | DOI
[10] Rubina L. I., Ul'yanov O. N., “On solving the potential equation”, Proc. Steklov Inst. Math., 261, suppl. 1 (2008), 183–200 | DOI | MR
[11] Courant R., Hilbert D., Methods of mathematical physics, v. 2, Partial differential equations, Interscience, New York, 1962, xxii+830 pp. | MR | Zbl
[12] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear equations of mathematical physics: exact solutions, Fizmatlit, M., 2002, 432 pp.
[13] Korotkii A. I., “Reconstruction of boundary regimes in models of stationary reaction–convection–diffusion”, Actual problems of applied mathematics and mechanics, Abstracts of VII All-Russian conference dedicated to the memory of Academician A. F. Sidorov, N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2014, 33–34 (in Russian)