On the definition of uniform complete controllability
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 326-343
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear control system \begin{equation} \dot x=A(t)x+B(t)u,\quad t\in\mathbb R,\quad x\in\mathbb R^{n},\quad u\in\mathbb R^{m}, \tag{1} \end{equation} under the assumption that the transition matrix $X(t,s)$ of the free system $\dot x = A(t)x$ is continuous with respect to $t$ and $s$ separately. We also suppose that on each interval $[\tau, \tau + \vartheta]$ of fixed length $\vartheta$ the normed space $Z_{\tau} $ of functions defined on this interval is given. A control $u$ on the interval $[\tau, \tau+\vartheta]$ is called admissible if $u\in Z_{\tau}$ and there exists the integral $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. The vector subspace $U_{\tau}$ of the space $Z_{\tau}$ where the operator $\mathcal Q_{\tau}$ is defined is called the space of admissible controls for the system (1) on the interval $[\tau,\tau +\vartheta]$. We propose a definition of uniform complete controllability of the system (1) for the case of an arbitrary dependence of the space of admissible controls on the moment of the beginning of the control process. In this situation direct and dual necessary and sufficient conditions for uniform complete controllability of a linear system are obtained. It is shown that with proper choice of the space of admissible controls, the resulting conditions are equivalent to the classical definitions of uniform complete controllability.
Keywords: linear control systems, uniform complete controllability.
@article{VUU_2017_27_3_a3,
     author = {E. K. Makarov and S. N. Popova},
     title = {On the definition of uniform complete controllability},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {326--343},
     year = {2017},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a3/}
}
TY  - JOUR
AU  - E. K. Makarov
AU  - S. N. Popova
TI  - On the definition of uniform complete controllability
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 326
EP  - 343
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a3/
LA  - ru
ID  - VUU_2017_27_3_a3
ER  - 
%0 Journal Article
%A E. K. Makarov
%A S. N. Popova
%T On the definition of uniform complete controllability
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 326-343
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a3/
%G ru
%F VUU_2017_27_3_a3
E. K. Makarov; S. N. Popova. On the definition of uniform complete controllability. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 326-343. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a3/

[1] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp.

[2] Kalman R. E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematisa Mexicana, 5:1 (1960), 102–119 | MR | Zbl

[3] Popova S. N., Problems of control over Lyapunov exponents, Cand. Sci. (Phys.-Math.) Dissertation, Izhevsk, 1992, 103 pp. (In Russian)

[4] Zaitsev V. A., “Criteria for uniform complete controllability of a linear system”, Vestn. Udmurt. Univ. Mat. Mech. Komp'yt. Nauki, 25:2 (2015), 157–179 (in Russian) | DOI | Zbl

[5] Makarov E. K., Popova S. N., Controllability of asymptotic invariants of non-stationary linear systems, Belarus. Navuka, Minsk, 2012, 407 pp.

[6] Nashed M. Z., Votruba G. F., “A unified operator theory of generalized inverses”, Generalized inverses and applications, 1976, 1–109 | DOI | MR | Zbl

[7] Tonkov E. L., “A criterion of uniform controllability and stabilization of a linear recurrent system”, Differential Equations, 15 (1979), 1285–1292 | MR | Zbl

[8] Krein S. G., Linear equations in Banach spaces, Nauka, M., 1971, 104 pp.

[9] Makarov E. K., Popova S. N., “On the global controllability of a complete set of Lyapunov invariants of two-dimensional linear systems”, Differential Equations, 35:1 (1999), 97–107 | MR | Zbl

[10] Kozlov A. A., “On the control of Lyapunov exponents of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 44:10 (2008), 1375–1392 | DOI | MR | Zbl

[11] Kozlov A. A., Burak A. D., “On the control of characteristic exponents of three-dimensional linear differential systems with discontinuous and fast oscillating coefficients”, Vesnik Vitsebsk. Dzyarzh. Univ., 2013, no. 5 (77), 11–31 (in Russian)

[12] Kozlov A. A., Ints I. V., “On the global Lyapunov reducibility of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 52:6 (2016), 699–721 | DOI | DOI | Zbl

[13] Gabasov R. F., Kirillova F. M., Optimization of linear systems, Belarusian State University, Minsk, 1973, 248 pp.

[14] Demidovich V. B., “A certain criterion for the stability of difference equations”, Differ. Uravn., 5:7 (1969), 1247–1255 (in Russian) | Zbl

[15] Latushkin Y., Randolph T., Schnaubelt R., “Exponential dichotomy and mild solutions of non autonomous equations in Banach spaces”, Journal of Dynamics and Differential Equations, 10:3 (1998), 489–510 | DOI | MR | Zbl