@article{VUU_2017_27_3_a3,
author = {E. K. Makarov and S. N. Popova},
title = {On the definition of uniform complete controllability},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {326--343},
year = {2017},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a3/}
}
TY - JOUR AU - E. K. Makarov AU - S. N. Popova TI - On the definition of uniform complete controllability JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 326 EP - 343 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a3/ LA - ru ID - VUU_2017_27_3_a3 ER -
E. K. Makarov; S. N. Popova. On the definition of uniform complete controllability. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 326-343. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a3/
[1] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp.
[2] Kalman R. E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematisa Mexicana, 5:1 (1960), 102–119 | MR | Zbl
[3] Popova S. N., Problems of control over Lyapunov exponents, Cand. Sci. (Phys.-Math.) Dissertation, Izhevsk, 1992, 103 pp. (In Russian)
[4] Zaitsev V. A., “Criteria for uniform complete controllability of a linear system”, Vestn. Udmurt. Univ. Mat. Mech. Komp'yt. Nauki, 25:2 (2015), 157–179 (in Russian) | DOI | Zbl
[5] Makarov E. K., Popova S. N., Controllability of asymptotic invariants of non-stationary linear systems, Belarus. Navuka, Minsk, 2012, 407 pp.
[6] Nashed M. Z., Votruba G. F., “A unified operator theory of generalized inverses”, Generalized inverses and applications, 1976, 1–109 | DOI | MR | Zbl
[7] Tonkov E. L., “A criterion of uniform controllability and stabilization of a linear recurrent system”, Differential Equations, 15 (1979), 1285–1292 | MR | Zbl
[8] Krein S. G., Linear equations in Banach spaces, Nauka, M., 1971, 104 pp.
[9] Makarov E. K., Popova S. N., “On the global controllability of a complete set of Lyapunov invariants of two-dimensional linear systems”, Differential Equations, 35:1 (1999), 97–107 | MR | Zbl
[10] Kozlov A. A., “On the control of Lyapunov exponents of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 44:10 (2008), 1375–1392 | DOI | MR | Zbl
[11] Kozlov A. A., Burak A. D., “On the control of characteristic exponents of three-dimensional linear differential systems with discontinuous and fast oscillating coefficients”, Vesnik Vitsebsk. Dzyarzh. Univ., 2013, no. 5 (77), 11–31 (in Russian)
[12] Kozlov A. A., Ints I. V., “On the global Lyapunov reducibility of two-dimensional linear systems with locally integrable coefficients”, Differential Equations, 52:6 (2016), 699–721 | DOI | DOI | Zbl
[13] Gabasov R. F., Kirillova F. M., Optimization of linear systems, Belarusian State University, Minsk, 1973, 248 pp.
[14] Demidovich V. B., “A certain criterion for the stability of difference equations”, Differ. Uravn., 5:7 (1969), 1247–1255 (in Russian) | Zbl
[15] Latushkin Y., Randolph T., Schnaubelt R., “Exponential dichotomy and mild solutions of non autonomous equations in Banach spaces”, Journal of Dynamics and Differential Equations, 10:3 (1998), 489–510 | DOI | MR | Zbl