Mots-clés : group
@article{VUU_2017_27_3_a13,
author = {S. D. Sulova},
title = {Creating groups for marketing purposes from website usage data},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {470--478},
year = {2017},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a13/}
}
TY - JOUR AU - S. D. Sulova TI - Creating groups for marketing purposes from website usage data JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 470 EP - 478 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a13/ LA - en ID - VUU_2017_27_3_a13 ER -
S. D. Sulova. Creating groups for marketing purposes from website usage data. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 470-478. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a13/
[1] Etzioni O., The World-Wide Web: quagmire or gold mine?, Communications of the ACM, 39:11 (1996), 65–68 | DOI
[2] Sulova S., “Application of web mining in customer relationship managament”, Izvestia, Journal of the Union of Scientists – Varna, Economic Sciences Section, 2015, no. 1, 105–110 https://ideas.repec.org/a/vra/journl/y2015i1p105-110.html
[3] Cooley R., Mobasher B., Srivastava J., “Web mining: information and pattern discovery on the World Wide Web”, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence, ICTAI'97, IEEE Computer Society, 1997, 558–567 | DOI
[4] Markov Z., Larosed D. T., Data mining the web: uncovering patterns in web content, structure, and usage, John Wiley Sons, New Jersey, 2007, 218 pp.
[5] Kumar E., Natural language processing, I. K. International Publishing House Pvt. Ltd., New Delhi, 2011, 224 pp.
[6] Fayyad U., Piatetsky-Shapiro G., Smyth P., “From data mining to knowledge discovery in databases”, AI Magazine, 17:3 (1996), 37–54 | DOI
[7] Fan W., Wallace L., Rich S., Zhang Z., “Tapping the power of text mining”, Communications of the ACM, 49:9 (2006), 76–82 | DOI | MR
[8] Peña-Ayala A., Educational data mining. Applications and trends, Springer International Publishing, Heidelberg, 2014, xviii+468 pp. | DOI
[9] Tarczynski T., “Document clustering — concepts, metrics and algorithms”, International Journal of Electronics and Telecommunications, 57:3 (2011), 271–277 | DOI
[10] Hartigan J. A., Wong M. A., “Algorithm AS 136: a $k$-means clustering algorithm”, Journal of the Royal Statistical Society. Series C (Applied Statistics), 28:1 (1979), 100–108 | DOI | MR | Zbl
[11] Dixit D., Kiruthika M., “Preprocessing of web logs”, International Journal on Computer Science and Engineering, 2:7 (2010), 2447–2452 http://www.enggjournals.com/ijcse/doc/IJCSE10-02-07-20.pdf
[12] Wong S. K. M., Raghavan V. V., “Vector space model of information retrieval: a reevaluation”, SIGIR '84 Proceedings of the 7th annual international ACM SIGIR conference on Research and development in information retrieval (1984, Cambridge, England), 167–185 http://dl.acm.org/citation.cfm?id=636816
[13] Jing L., Ng M. K., Yang X., Huang J. Z., “A text clustering system based on $k$-means type subspace clustering and ontology”, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 2:4 (2008), 1296–1308 http://waset.org/publications/2401 | MR
[14] Steinbach M., Karypis G., Kumar V., “A comparison of document clustering techniques”, KDD Workshop on Text Mining (2000) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.9225
[15] Antony S., Wagh R., “Study on text clustering for topic identification”, International Journal of Advanced Research in Computer Science, 8:1 (2017), 161–164 http://ijarcs.info/index.php/Ijarcs/article/view/2874
[16] Linden A., Krensky P., Hare J., Idoine C. J., Sicular S., Vashisth S., Magic quadrant for data science platforms, https://www.gartner.com/doc/3606026/magic-quadrant-data-science-platforms
[17] Huang A., “Similarity measures for text document clustering”, Proceedings of the Sixth New Zealand Computer Science Research Student Conference, NZCSRSC 2008 (University of Canterbury, Christchurch, 2008), 49–56 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.332.4480 | Zbl
[18] Sandhya N., Lalitha Y. S., Govardhan A., Anuradha K., “Analysis of similarity measures for text clustering”, International Journal of Data Engineering, 2:4 (2008) http://www.cscjournals.org/manuscript/Journals/IJDE/Volume2/Issue4/IJDE-63.pdf | MR
[19] Singh A., Yadav A., Rana A., “K-means with three different distance metrics”, International Journal of Computer Applications, 67:10 (2013), 13–17 | DOI
[20] Davies D., Bouldin D. A., “A cluster separation measure”, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1:2 (1979), 224–227 | DOI