Application of WENO scheme for simulation of turbulent flow in a channel with backward-facing step
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 460-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The technique of viscous gas turbulent flow simulation based on high-order approximation WENO scheme (Weighted Essentially Non-oscillatory scheme) is described. This scheme is characterized by significant stability when calculations are performed, because WENO allows to eliminate nonphysical oscillations of a numerical solution which can occur during calculations. The system of governing equations describing the flow of viscous gas based on the Navier–Stokes equations is presented. The algorithms of 3-rd and 5-th accuracy orders are developed and implemented. The numerical methods used in the calculations of gas flow are described. Turbulence modeling is carried out using the method of large vortices. The proposed algorithms have been used to study the flow of viscous gas in a channel with backward-facing step. Reynolds number of the flow in the channel was Re = 15 000. Comparison of simulation results with experimental data has been made.
Keywords: WENO scheme, method of large vortices, Computational Fluid Dynamics.
Mots-clés : turbulence
@article{VUU_2017_27_3_a12,
     author = {A. A. Shumikhin and M. R. Koroleva and S. Yu. Dadikina and A. I. Karpov},
     title = {Application of {WENO} scheme for simulation of turbulent flow in a channel with backward-facing step},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {460--469},
     year = {2017},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a12/}
}
TY  - JOUR
AU  - A. A. Shumikhin
AU  - M. R. Koroleva
AU  - S. Yu. Dadikina
AU  - A. I. Karpov
TI  - Application of WENO scheme for simulation of turbulent flow in a channel with backward-facing step
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 460
EP  - 469
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a12/
LA  - ru
ID  - VUU_2017_27_3_a12
ER  - 
%0 Journal Article
%A A. A. Shumikhin
%A M. R. Koroleva
%A S. Yu. Dadikina
%A A. I. Karpov
%T Application of WENO scheme for simulation of turbulent flow in a channel with backward-facing step
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 460-469
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a12/
%G ru
%F VUU_2017_27_3_a12
A. A. Shumikhin; M. R. Koroleva; S. Yu. Dadikina; A. I. Karpov. Application of WENO scheme for simulation of turbulent flow in a channel with backward-facing step. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 460-469. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a12/

[1] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl

[2] Jiang G.-S., Shu C.-W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[3] Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report No 97-65, NASA-CR/97-206253, 1997, 83 pp. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980007543.pdf

[4] Balsara D. S., Shu C.-W., “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy”, J. Comput. Phys., 160:2 (2000), 405–452 | DOI | MR | Zbl

[5] Smagorinsky J., “General circulation experiments with the primitive equations. I. The basic experiment”, Monthly Weather Review, 91:3 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] Ducros F., Nicoud F., Poinsot T., “Wall-adapting local eddy-viscosity models for simulations in complex geometries”, Proceeding of the 6th ICFD Conference on Numerical Methods for Fluid Dynamic, United Kingdom, Oxford, 1998, 293–299

[7] Volkov K. N., Emel'yanov V. N., Large Eddy Simulation in predicting of turbulent flows, Fizmatlit, M., 2008, 368 pp.

[8] Karpov A. I., Shumikhin A. A., “A parametric study of internal turbulent flows by the Large Eddy Simulation”, Vestn. Udmurt. Univ. Mat. Mech. Komp'yut. Nauki, 2009, no. 4, 62–70 (in Russian) | DOI

[9] Shumikhin A. A., Karpov A. I., “Large-Eddy Simulation of the turbulent diffusion flame”, Vychislitel'naya mekhanika sploshnykh sred, 5:2 (2012), 199–207 (in Russian) | DOI

[10] Steger J. L., Warming R. F., “Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods”, J. Comput. Phys., 40:2 (1981), 263–293 | DOI | MR | Zbl

[11] van Leer B., “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | MR | Zbl

[12] Osher S., Chakravarthy S., “Upwind schemes and boundary conditions with applications to Euler equations in general geometries”, J. Comput. Phys., 50:3 (1983), 447–481 | DOI | MR | Zbl

[13] Anderson W. K., Thomas J. L., van Leer B., “Comparison of finite volume flux vector splittings for the Euler equations”, AIAA Journal, 24:9 (1986), 1453–1460 | DOI

[14] Terekhov V. I., Smul'skii Ya. I., Sharov K. A., “Interference of separated flows behind backward-facing step in the presence of passive control”, Technical Physics Letters, 38:2 (2012), 125–128 | DOI | Zbl