Randomized Nash equilibrium for differential games
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 299-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the randomized Nash equilibrium for a nonzero-sum deterministic differential game of two players. We assume that each player is informed about the control of the partner realized up to the current moment. Therefore, the game is formalized in the class of randomized non-anticipative strategies. The main result of the paper is the characterization of a set of Nash values considered as pairs of expected players' outcomes. The characterization involves the value functions of the auxiliary zero-sum games. As a corollary we get that the set of Nash values in the case when the players use randomized strategies is a convex hull of the set of Nash values in the class of deterministic strategies. Additionally, we present an example showing that the randomized strategies can enhance the outcome of the players.
Keywords: differential games, Nash equilibrium, randomized strategies.
@article{VUU_2017_27_3_a0,
     author = {Y. V. Averboukh},
     title = {Randomized {Nash} equilibrium for differential games},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {299--308},
     year = {2017},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a0/}
}
TY  - JOUR
AU  - Y. V. Averboukh
TI  - Randomized Nash equilibrium for differential games
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 299
EP  - 308
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a0/
LA  - en
ID  - VUU_2017_27_3_a0
ER  - 
%0 Journal Article
%A Y. V. Averboukh
%T Randomized Nash equilibrium for differential games
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 299-308
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a0/
%G en
%F VUU_2017_27_3_a0
Y. V. Averboukh. Randomized Nash equilibrium for differential games. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 3, pp. 299-308. http://geodesic.mathdoc.fr/item/VUU_2017_27_3_a0/

[1] Averboukh Yu., “Nash equilibrium for differential games and nonanticipative strategies”, IFAC Proceedings Volumes, 44:1 (2011), 9340–9342 | DOI | MR

[2] Averboukh Yu., “Nash equilibrium in differential games and the quasi-strategy formalism”, Automation and Remote Control, 75:8 (2014), 1491–1502 | DOI | MR

[3] Bressan A., Shen W., “Semi-cooperative strategies for differential games”, Internat. J. Game Theory, 32:4 (2004), 561–593 ; Averbukh Yu. V., “Ravnovesie po Neshu v differentsialnykh igrakh i formalizm kvazistrategii”, Matematicheskaya teoriya igr i ee prilozheniya, 4:3 (2012), 3–20 | DOI | MR | Zbl | Zbl

[4] Bressan A., Shen W., “Small BV solutions of hyperbolic noncooperative differential games”, SIAM J. Control Optim., 43:1 (2004), 194–215 | DOI | MR | Zbl

[5] Buckdahn R., Cardaliaguet P., Rainer C., “Nash equilibrium payoffs for nonzero-sum stochastic differential games”, SIAM J. Control Optim., 43:2 (2004), 624–642 | DOI | MR | Zbl

[6] Case J. H., “Towards a theory of many players differential games”, SIAM Journal on Control, 7:2 (1969), 179–197 | DOI | MR | Zbl

[7] Chistyakov S. V., “On noncooperative differential games”, Dokl. Akad. Nauk SSSR, 259 (1981), 1052–1055 (in Russian) | MR

[8] Elliot R. J., Kalton N., The existence of value in differential games, Memoir Am. Math. Soc., 126, AMS, Providence, 1972 | MR

[9] Friedman A., Differential games, Wiley, New York, 1971 | MR | Zbl

[10] Kleimenov A. F., Non-antagonistic positional differential games, Nauka, Ekaterinburg, 1993 | MR

[11] Kononenko A. F., “On equilibrium positional strategies in nonantagonistic differential games”, Dokl. Akad. Nauk SSSR, 231 (1976), 285–288 (in Russian) | MR | Zbl

[12] Kononenko A. F., Chistyakov Yu. E., “On equilibrium positional strategies in $n$-person differential games”, Soviet Math. Dokl., 37:2 (1988), 514–517 | MR | Zbl

[13] Nash J., “Equilibrium points in $n$-person games”, Proceedings of the National Academy of Sciences of the United States of America, 36:1 (1950), 48–49 | DOI | MR | Zbl

[14] Roxin E., “Axiomatic approach in differential games”, J. Optimiz. Theory Appl., 3:3 (1969), 153–163 | DOI | MR | Zbl

[15] Subbotin A. I., Chentsov A. G., Optimization of the guarantee in control problems, Nauka, M., 1981 | MR

[16] Tolwinski B., Haurie A., Leitman G., “Cooperate equilibria in differential games”, J. Math. Anal. Appl., 119 (1986), 182–202 | DOI | MR | Zbl

[17] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972 | MR | Zbl