On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 267-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the opportunities of approximation of a piecewise continuous function on a finite segment by a linear combination of $\mu$ Gaussian functions, with the object of their usage for control approximation in lumped problems of optimal control. Recall that a Gaussian function (quadratic exponent) is one defined as follows $\varphi(x)=\dfrac{1}{\sigma\sqrt{2\pi}} \exp\left[ -\dfrac{(x-m)^2}{2\sigma^2} \right]$. Unlike investigations carried out by another authors, we consider the case where the parameters of a Gaussian function (with the coefficients of a linear combination) are varied and selected, in particular, by minimization of the difference between a function being approximated and its approximation, or (in the case of an optimal control problem) by minimization of the cost functional. Such an approach gives the opportunity to approximate optimal control problems with lumped parameters by finite dimensional problems of mathematical programming of comparatively small dimension (as opposed to piecewise constant or piecewise linear approximation on a fixed mesh with small width which is usually used). We present also some results of numerical experiments which substantiate efficiency of the approach under study.
Keywords: control parametrization technique, lumped problem of optimal control, approximation by quadratic exponents, Gaussian function.
@article{VUU_2017_27_2_a9,
     author = {A. V. Chernov},
     title = {On using {Gaussian} functions with varied parameters for approximation of functions of one variable on a finite segment},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {267--282},
     year = {2017},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a9/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 267
EP  - 282
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a9/
LA  - ru
ID  - VUU_2017_27_2_a9
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 267-282
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a9/
%G ru
%F VUU_2017_27_2_a9
A. V. Chernov. On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 267-282. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a9/

[1] Afanas'ev V. N., Kolmanovskii V. B., Nosov V. R., Mathematical theory of control systems construction, Vysshaya shkola, M., 2003, 614 pp.

[2] Volin Yu. M., Ostrovski G. M., “On the method of successive approximation of optimum behaviour design of certain distributed parameter systems”, Autom. Remote Control, 26 (1965), 1188–1194 | MR

[3] Teo K. L., Goh C. J., Wong K. H., A unified computational approach to optimal control problems, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1991, ix+329 pp. | MR | Zbl

[4] Chernov A. V., “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Comput. Math. Math. Phys., 53:12 (2013), 1839–1852 | DOI | DOI | MR | Zbl

[5] Chernov A. V., “On applicability of control parametrization technique to solving distributed optimization problems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 1, 102–117 (in Russian) | DOI

[6] Chernov A. V., Numerical solving of distributed optimization problems by control parametrization method, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 2014, 71 pp.

[7] Chernov A. V., “On piecewise constant approximation in distributed optimization problems”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 21, no. 1 (2015), 264–279 (in Russian)

[8] Golubev Yu. F., Seregin I. A., Khayrullin R. Z., “The floating nodes method”, Sov. J. Comput. Syst. Sci., 30:2 (1992), 71–76 | MR

[9] Chernov A. V., “On approximate solution of free time optimal control problems”, Vestnik Nizhegorodskogo Universiteta imeni N. I. Lobachevskogo, 2012, no. 6(1), 107–114 (in Russian)

[10] Chernov A. V., “On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 20, no. 1 (2014), 305–321 (in Russian)

[11] Lanzara F., Maz'ya V., Schmidt G., “Approximate approximations from scattered data”, Approx. Theory, 145:2 (2007), 141–170 | DOI | MR | Zbl

[12] Maz'ya V., Schmidt G., Approximate approximations, American Mathematical Society, Providence, RI, 2007, xiv+349 pp. | DOI | MR | Zbl

[13] Zhuravlev M. V., Minin L. A., Sitnik S. M., “On numerical aspects of interpolating by shift of gaussian functions”, Nauchnye Vedomosti Belgorodskogo Gosudarstvennogo Universiteta. Seriya: Matematika, Fizika, 13(68):17/2 (2009), 89–99 (in Russian)

[14] Sitnik S. M., Timashov A. S., “Applications of exponential approximation by integer shifts of Gaussian functions”, Vestnik Voronezhskogo Gosudarstvennogo Universiteta Inzhenernykh Tekhnologii, 2013, no. 2(56), 90–94 (in Russian)

[15] Prasolov V. V., Problems and theorems of linear algebra, Nauka, M., 1996, 536 pp.

[16] Graham R. L., Knuth D. E., Patashnik O., Concrete mathematics. A foundation for computer science, Addison-Wesley Publishing Company, Reading, MA, 1994, xiv+657 pp. | MR | Zbl

[17] Tyrtyshnikov E. E., Matrix analysis and linear algebra, Fizmatlit, M., 2007, 480 pp.

[18] Fedorov V. M., The course in functional analysis, Lan', Saint Petersburg, 2005, 352 pp.

[19] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und OperatordifferentialGleichungen, Akademie-Verlag, Berlin, 1974, vi+281 pp. | MR | Zbl