Scattering and quasilevels in the SSH model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 257-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Topological insulator is a special type of material that represents an insulator in the interior (“in bulk”) and conducts electricity on the surface. The simplest topological insulator is a finite chain of atoms in polyacetylene. In the last decade topological insulators are actively studied in the physics literature. A great interest to topological insulators (and also to topologically similar superconducting systems) is due to the presence of a link between “volume” and “boundary”. In this article, we have studied the discrete model SSH (Su–Schrieffer–Heeger) for polyacetylene. This model describes an electron in a one-dimensional chain of atoms with two alternating amplitudes of the transition to a neighboring atom. We have found the spectrum and resolution of this operator. The quasilevels (eigenvalues and resonances) in the case of a small potential have been investigated. In addition, we obtained a solution of the Lippmann–Schwinger equation and asymptotic formulas for the probability of transmission and reflection in case of small perturbation.
Keywords: resolution, spectrum, eigenvalue, resonance, Lippmann–Schwinger equation, probability of reflection.
@article{VUU_2017_27_2_a8,
     author = {T. S. Tinyukova},
     title = {Scattering and quasilevels in the {SSH} model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {257--266},
     year = {2017},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a8/}
}
TY  - JOUR
AU  - T. S. Tinyukova
TI  - Scattering and quasilevels in the SSH model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 257
EP  - 266
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a8/
LA  - ru
ID  - VUU_2017_27_2_a8
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%T Scattering and quasilevels in the SSH model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 257-266
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a8/
%G ru
%F VUU_2017_27_2_a8
T. S. Tinyukova. Scattering and quasilevels in the SSH model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 257-266. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a8/

[1] Hasan M. Z., Kane C. L., “Colloquium: topological insulators”, Reviews of Modern Physics, 82:4 (2010), 3045–3067 | DOI

[2] Bardarson J. H., Moore J. E., “Quantum interference and Aharonov–Bohm oscillations in topological insulators”, Rep. Progr. Phys., 76:5 (2013), 056501 | DOI

[3] Asbóth J. K., Oroszlány L., Pályi A., A short course on topological insulators: band-structure topology and edge states in one and two dimensions, Lecture Notes in Physics, 919, 2016 | DOI | MR

[4] Ruzicka F., “Hilbert space inner products for $\mathcal{PT}$-symmetric Su–Schrieffer–Heeger models”, International Journal of Theoretical Physics, 54:11 (2015), 4154–4163 | DOI | MR | Zbl

[5] Leijnse M., Flensberg K., “Introduction to topological superconductivity and Majorana fermions”, Semiconductor Science and Technology, 27:12 (2012), 124003 | DOI

[6] Tinyukova T. S., “Two-dimensional difference Dirac operator in the strip”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 93–100 (in Russian) | DOI | Zbl

[7] Tinyukova T. S., “Scattering in the case of the discrete Schrödinger operator for intersected quantum wires”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 74–84 (in Russian) | DOI