Keywords: singular point
@article{VUU_2017_27_2_a7,
author = {A. V. Seliverstov},
title = {On tangent lines to affine hypersurfaces},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {248--256},
year = {2017},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a7/}
}
A. V. Seliverstov. On tangent lines to affine hypersurfaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 248-256. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a7/
[1] Eder C., Faugère J.-C., “A survey on signature-based algorithms for computing Gröbner bases”, Journal of Symbolic Computation, 80:3 (2017), 719–784 | DOI | MR
[2] Malaschonok G. I., “New generation of symbolic computation systems”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 21:6 (2016), 2026–2041 (in Russian) | DOI
[3] Kulikov V. R., Stepanenko V. A., “On solutions and Waring's formulae for the system of $n$ algebraic equations for $n$ unknowns”, St. Petersburg Math. J., 26 (2015), 839–848 | DOI | MR | Zbl
[4] Herrero M. I., Jeronimo G., Sabia J., “Affine solution sets of sparse polynomial systems”, Journal of Symbolic Computation, 51 (2013), 34–54 | DOI | MR | Zbl
[5] Seliverstov A. V., “Cubic forms without monomials in two variables”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 71–77 (in Russian) | DOI | Zbl
[6] Gel'fand I. M., Zelevinskii A. V., Kapranov M. M., “Discriminants of polynomials in several variables and triangulations of Newton polyhedra”, Leningrad Math. J., 2:3 (1991), 499–505 | MR
[7] Cenk M., Hasan M. A., “On the arithmetic complexity of Strassen-like matrix multiplications”, Journal of Symbolic Computation, 80 (2017), 484–501 | DOI | MR | Zbl
[8] Polo-Blanco I., Top J., “A remark on parameterizing nonsingular cubic surfaces”, Computer Aided Geometric Design, 26:8 (2009), 842–849 | DOI | MR | Zbl
[9] Seliverstov A. V., “On cubic hypersurfaces with involutions”, International Conference Polynomial Computer Algebra'2016 (Russian Academy of Sciences, St. Petersburg Department of Steklov Mathematical Institute, Euler International Mathematical Institute, St. Petersburg, 2016), 74–77
[10] Golubyatnikov V. P., “On unique recoverability of convex and visible compacta from their projections”, Math. USSR-Sb., 73:1 (1992), 1–10 | DOI | MR | Zbl | Zbl
[11] Ushakov V. N., Uspenskii A. A., “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 95–120 (in Russian) | DOI | Zbl
[12] Golubyatnikov V. P., Rovenski V. Yu., “Some extensions of the class of $k$-convex bodies”, Sib. Math. J., 50:5 (2009), 820–829 | DOI | MR | Zbl