On tangent lines to affine hypersurfaces
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 248-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article focuses on methods to look for singular points of an affine hypersurface or to confirm the smoothness of the hypersurface. Our approach is based on the description of tangent lines to the hypersurface. The existence of at least one singular point imposes a restriction on the algebraic equation that determines the set of tangent lines passing through the selected point of the space. This equation is based on the formula for the discriminant of a univariate polynomial. For an arbitrary fixed hypersurface degree, we have proposed a deterministic polynomial time algorithm for computing a basis for the subspace of the corresponding polynomials. If a linear combination of these polynomials does not vanish on the hypersurface, then the hypersurface is smooth. We state a sufficient smoothness condition, which is verifiable in polynomial time. There are smooth affine hypersurfaces for which the condition is satisfied. The set includes the graphs of cubic polynomials in many variables as well as other examples of cubic hypersurfaces. On the other hand, the condition is violated for some high-dimensional cubic hypersurfaces. This does not prevent the application of the method in low dimensions. Searching for singular points is also important for solving some problems of machine vision, including detection of a corner by means of the frame sequence with one camera on a moving vehicle.
Mots-clés : hypersurface, tangent line, polynomial, discriminant.
Keywords: singular point
@article{VUU_2017_27_2_a7,
     author = {A. V. Seliverstov},
     title = {On tangent lines to affine hypersurfaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {248--256},
     year = {2017},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a7/}
}
TY  - JOUR
AU  - A. V. Seliverstov
TI  - On tangent lines to affine hypersurfaces
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 248
EP  - 256
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a7/
LA  - ru
ID  - VUU_2017_27_2_a7
ER  - 
%0 Journal Article
%A A. V. Seliverstov
%T On tangent lines to affine hypersurfaces
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 248-256
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a7/
%G ru
%F VUU_2017_27_2_a7
A. V. Seliverstov. On tangent lines to affine hypersurfaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 248-256. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a7/

[1] Eder C., Faugère J.-C., “A survey on signature-based algorithms for computing Gröbner bases”, Journal of Symbolic Computation, 80:3 (2017), 719–784 | DOI | MR

[2] Malaschonok G. I., “New generation of symbolic computation systems”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 21:6 (2016), 2026–2041 (in Russian) | DOI

[3] Kulikov V. R., Stepanenko V. A., “On solutions and Waring's formulae for the system of $n$ algebraic equations for $n$ unknowns”, St. Petersburg Math. J., 26 (2015), 839–848 | DOI | MR | Zbl

[4] Herrero M. I., Jeronimo G., Sabia J., “Affine solution sets of sparse polynomial systems”, Journal of Symbolic Computation, 51 (2013), 34–54 | DOI | MR | Zbl

[5] Seliverstov A. V., “Cubic forms without monomials in two variables”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 71–77 (in Russian) | DOI | Zbl

[6] Gel'fand I. M., Zelevinskii A. V., Kapranov M. M., “Discriminants of polynomials in several variables and triangulations of Newton polyhedra”, Leningrad Math. J., 2:3 (1991), 499–505 | MR

[7] Cenk M., Hasan M. A., “On the arithmetic complexity of Strassen-like matrix multiplications”, Journal of Symbolic Computation, 80 (2017), 484–501 | DOI | MR | Zbl

[8] Polo-Blanco I., Top J., “A remark on parameterizing nonsingular cubic surfaces”, Computer Aided Geometric Design, 26:8 (2009), 842–849 | DOI | MR | Zbl

[9] Seliverstov A. V., “On cubic hypersurfaces with involutions”, International Conference Polynomial Computer Algebra'2016 (Russian Academy of Sciences, St. Petersburg Department of Steklov Mathematical Institute, Euler International Mathematical Institute, St. Petersburg, 2016), 74–77

[10] Golubyatnikov V. P., “On unique recoverability of convex and visible compacta from their projections”, Math. USSR-Sb., 73:1 (1992), 1–10 | DOI | MR | Zbl | Zbl

[11] Ushakov V. N., Uspenskii A. A., “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 95–120 (in Russian) | DOI | Zbl

[12] Golubyatnikov V. P., Rovenski V. Yu., “Some extensions of the class of $k$-convex bodies”, Sib. Math. J., 50:5 (2009), 820–829 | DOI | MR | Zbl