On the invariant sets and chaotic solutions of difference equations with random parameters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 238-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the probability model defined by the difference equation \begin{equation} x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \tag{1} \end{equation} where $\Omega$ is a given set with sigma-algebra of subsets $\widetilde{\mathfrak A},$ on which a probability measure $\widetilde \mu$ is defined. Let $\mu $ be a continuation of the measure $\widetilde \mu $ on the sigma-algebra generated by cylindrical sets. We study invariant sets and attractors of the equation with random parameters $(1).$ We receive conditions under which a given set is the maximal attractor. It is shown that, in invariant set $A\subseteq [a,b]$, there can be solutions, which are chaotic with probability one. It is observed in the case when exist an $m_i\in\mathbb N $ and sets $\Omega_i\subset\Omega $ such that $ \mu (\Omega_i)> 0, $ $i=1,2,$ and ${\rm cl}\, f^{m_1}(\Omega_1,A)\cap \,{\rm cl}\, f^{m_2}(\Omega_2,A)=\varnothing.$ It is shown, that solutions, chaotic with probability one, exist also in the case when the equation $(1)$ either has no any cycle, or all cycles are unstable with probability one. The results of the paper are illustrated by the example of a continuous-discrete probabilistic model of the dynamics of an isolated population; for this model we investigate different modes of dynamic development, which have certain differences from the modes of determined models and describe the processes in real physical systems more exhaustively.
Keywords: difference equations with random parameters, stable and unstable cycles, chaotic solutions.
@article{VUU_2017_27_2_a6,
     author = {L. I. Rodina and A. H. Hammady},
     title = {On the invariant sets and chaotic solutions of difference equations with random parameters},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {238--247},
     year = {2017},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a6/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - A. H. Hammady
TI  - On the invariant sets and chaotic solutions of difference equations with random parameters
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 238
EP  - 247
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a6/
LA  - ru
ID  - VUU_2017_27_2_a6
ER  - 
%0 Journal Article
%A L. I. Rodina
%A A. H. Hammady
%T On the invariant sets and chaotic solutions of difference equations with random parameters
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 238-247
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a6/
%G ru
%F VUU_2017_27_2_a6
L. I. Rodina; A. H. Hammady. On the invariant sets and chaotic solutions of difference equations with random parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 238-247. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a6/

[1] Li T.-Y., Yorke J. A., “Period three implies chaos”, The American Mathematical Monthly, 82:10 (1975), 985–992 | DOI | MR | Zbl

[2] Svirezhev Yu. M., Logofet D. O., Stability of biological communities, Nauka, M., 1978, 352 pp.

[3] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dynamics of one-dimensional mappings, Naukova dumka, Kiev, 1989, 216 pp.

[4] Bobrovski D., Introduction to the theory of discrete-time dynamical systems, Regular and Chaotic Dynamics, Izhevsk, 2006, 360 pp.

[5] Sharkovskii A. N., Attractors of trajectories and their basins, Naukova dumka, Kiev, 2013, 320 pp.

[6] Shiryaev A. N., Probability, Nauka, M., 1989, 580 pp.

[7] Rodina L. I., Tyuteev I. I., “About asymptotical properties of solutions of difference equations with random parameters”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 79–86 (in Russian) | DOI | Zbl

[8] Rodina L. I., “On repelling cycles and chaotic solutions of difference equations with random parameters”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, no. 2 (2016), 227–235 (in Russian) | DOI

[9] Bratus' A. S., Novozhilov A. S., Rodina E. V., Discrete dynamic systems and mathematical models in ecology, Moscow State University of Railway Engineering, M., 2005, 139 pp.

[10] Feller W., An introduction to probability theory and its applications, v. 1, Wiley, 1971 | MR | Zbl

[11] Nedorezov L. V., Nazarov I. N., “Continuous-discrete models of dynamics of an isolated population and two competing species”, Mat. Strukt. Model., 1998, no. 2, 77–91 (in Russian)

[12] Nedorezov L. V., Nedorezova B. N., “Modification of Moran–Ricker models for dynamics of number of the isolated population”, Zhurnal Obshchei Biologii, 55:4–5 (1994), 514–521 (in Russian)