On Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 222-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a conflict-controlled dynamical system described by functional differential equations of neutral type in Hale’s form, we consider a differential game with a quality index that estimates the motion history realized up to the terminal time and includes an integral estimation of realizations of players’ controls. The game is formalized in the class of pure positional strategies. Based on a coinvariant derivatives conception we derive a Hamilton–Jacobi functional equation. It is proved, firstly, that the solution of this equation, satisfying certain conditions of smoothness, is the value of the initial differential game, and secondly, that value at points of differentiability satisfies the considered Hamilton–Jacobi equation. Thus this equation can be interpreted as the Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems.
Keywords: neutral type systems, differential games, Hamilton–Jacobi equation.
@article{VUU_2017_27_2_a5,
     author = {A. R. Plaksin},
     title = {On {Hamilton{\textendash}Jacobi{\textendash}Isaacs{\textendash}Bellman} equation for neutral type systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {222--237},
     year = {2017},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/}
}
TY  - JOUR
AU  - A. R. Plaksin
TI  - On Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 222
EP  - 237
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/
LA  - ru
ID  - VUU_2017_27_2_a5
ER  - 
%0 Journal Article
%A A. R. Plaksin
%T On Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 222-237
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/
%G ru
%F VUU_2017_27_2_a5
A. R. Plaksin. On Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 222-237. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965, 384 pp. | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.

[3] Osipov Iu. S., “On the theory of differential games of systems with aftereffect”, J. Appl. Math. Mech., 35:2 (1971), 262–272 | DOI | MR | Zbl

[4] Krasovskii N. N., Control of a dynamic system, Nauka, M., 1985, 516 pp.

[5] Gomoyunov M. I., Lukoyanov N. Yu., Plaksin A. R., “Existence of the value and saddle point in positional differential games for systems of neutral type”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 22, no. 2 (2016), 101–112 (in Russian) | DOI | Zbl

[6] Gomoyunov M. I., Lukoyanov N. Yu., “On the numerical solution of differential games for neutral-type linear systems”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 23, no. 1 (2017), 75–87 (in Russian) | DOI

[7] Subbotin A. I., Minimax inequalities and Hamilton–Jacobi equations, Nauka, M., 1991, 216 pp.

[8] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[9] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth analysis and control theory, Springer, New York, 1998, 278 pp. | MR | Zbl

[10] Lukoyanov N. Yu., “Functional equations of Hamilton-Jacobi type and differential games with hereditary information”, Doklady Mathematics, 61:2 (2000), 301–304 | MR | Zbl

[11] Aubin J.-P., Haddad G., “History path dependent optimal control and portfolio valuation and management”, Positivity, 6:3 (2002), 331–358 | DOI | MR | Zbl

[12] Lukoyanov N. Yu., “On optimality conditions for the guaranteed result in control problems for time-delay systems”, Proc. Steklov Inst. Math., 268, suppl. 1 (2010), S175–S187 | DOI | MR | Zbl

[13] Lukoyanov N. Yu., Functional Hamilton–Jacobi equations and control problems with hereditary information, Ural Federal University, Yekaterinburg, 2011, 243 pp.

[14] Kaise H., “Path-dependent differential games of inf–sup type and Isaacs partial differential equations”, 2015 IEEE 54th Annual Conference on Decision and Control (CDC), 2016, 1972–1977 | DOI

[15] Hale J. K., Cruz M. A., “Existence, uniqueness and continuous dependence for hereditary systems”, Ann. Mat. Pura Appl. (4), 85:1 (1970), 63–81 | DOI | MR | Zbl

[16] Kim A. V., Functional differential equations. Application of $i$-smooth calculus, Springer Netherlands, 1999, xv+168 pp. | DOI | MR

[17] Filippov A. F., Differential equations with discontinuous righthand sides, Springer, Berlin, 1988, x+304 pp. | DOI | MR