On Hamilton--Jacobi--Isaacs--Bellman equation for neutral type systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 222-237

Voir la notice de l'article provenant de la source Math-Net.Ru

For a conflict-controlled dynamical system described by functional differential equations of neutral type in Hale’s form, we consider a differential game with a quality index that estimates the motion history realized up to the terminal time and includes an integral estimation of realizations of players’ controls. The game is formalized in the class of pure positional strategies. Based on a coinvariant derivatives conception we derive a Hamilton–Jacobi functional equation. It is proved, firstly, that the solution of this equation, satisfying certain conditions of smoothness, is the value of the initial differential game, and secondly, that value at points of differentiability satisfies the considered Hamilton–Jacobi equation. Thus this equation can be interpreted as the Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems.
Keywords: neutral type systems, differential games, Hamilton–Jacobi equation.
@article{VUU_2017_27_2_a5,
     author = {A. R. Plaksin},
     title = {On {Hamilton--Jacobi--Isaacs--Bellman} equation for neutral type systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {222--237},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/}
}
TY  - JOUR
AU  - A. R. Plaksin
TI  - On Hamilton--Jacobi--Isaacs--Bellman equation for neutral type systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 222
EP  - 237
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/
LA  - ru
ID  - VUU_2017_27_2_a5
ER  - 
%0 Journal Article
%A A. R. Plaksin
%T On Hamilton--Jacobi--Isaacs--Bellman equation for neutral type systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 222-237
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/
%G ru
%F VUU_2017_27_2_a5
A. R. Plaksin. On Hamilton--Jacobi--Isaacs--Bellman equation for neutral type systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 222-237. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a5/