@article{VUU_2017_27_2_a4,
author = {G. V. Parshikov},
title = {On approximate solvability set construction in a guidance problem for a time-invariant control system on a finite time interval},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {210--221},
year = {2017},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a4/}
}
TY - JOUR AU - G. V. Parshikov TI - On approximate solvability set construction in a guidance problem for a time-invariant control system on a finite time interval JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 210 EP - 221 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a4/ LA - ru ID - VUU_2017_27_2_a4 ER -
%0 Journal Article %A G. V. Parshikov %T On approximate solvability set construction in a guidance problem for a time-invariant control system on a finite time interval %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 210-221 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a4/ %G ru %F VUU_2017_27_2_a4
G. V. Parshikov. On approximate solvability set construction in a guidance problem for a time-invariant control system on a finite time interval. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 210-221. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a4/
[1] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp.
[2] Kurzhanski A. B., Control and observation under uncertainty, Nauka, M., 1977, 392 pp.
[3] Krasovskii N. N., Control of dynamic system, Nauka, M., 1985, 520 pp.
[4] Kurzhanski A. B., Selected papers, Moscow State University, M., 2009, 756 pp.
[5] Ushakov V. N., Matviichuk A. R., Parshikov G. V., “A method for constructing a resolving control in an approach problem based on attraction to the feasibility set”, Proceedings of the Steklov Institute of Mathematics, 284, suppl. 1 (2014), 135–144 | DOI | MR
[6] Chernousko F. L., Dynamical systems phase state estimation: ellipsoid method, Nauka, M., 1988, 319 pp.
[7] Kurzhanski A., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl
[8] Lempio F., Veliov V., “Discrete approximation of differential inclusions”, Bayr. Math. Schriften., 54 (1998), 149–232 | MR | Zbl
[9] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “The approximation of reachable domains of control systems”, Journal of Applied Mathematics and Mechanics, 62:2 (1998), 169–175 | DOI | MR | Zbl
[10] Gusev M. I., “Estimates of reachable sets of multidimensional control systems with nonlinear interconnections”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 134–146 | DOI | MR | Zbl
[11] Filippova T. F., “Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 95–102 | DOI | MR | Zbl
[12] Matviychuk A. R., Ukhobotov V. I., Ushakov A. V., Ushakov V. N., “A guidance problem for a nonlinear control system on a finite time interval”, Prikl. Mat. Mekh., 81:2 (2017), 165–187 (in Russian)
[13] Khalil H. K., Nonlinear systems, Regular and Chaotic Dynamics, Izhevsk, 2009, 812 pp.