On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 178-192

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear time-varying control system with locally integrable and integrally bounded coefficients \begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation} We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system \begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation} we study a question about the conditions for its uniform global attainability. The last property of the system (2) means existence of a matrix $U(t)$, $t\geqslant 0$, that ensure equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such $\sigma>0$ and $\gamma>0,$ that for any initial time $t_0\geqslant 0$ and initial condition $x(t_0)=x_0\in \mathbb{R}^n$ of the system (1) on the segment $[t_0,t_0+\sigma]$ there exists a measurable and bounded vector control $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ that transforms a vector of the initial state of the system into zero on that segment. It is proved that in two-dimensional case, i.e. when $n=2,$ the property of uniform complete controllability of the system (1) is a sufficient condition of uniform global attainability of the corresponding system (2).
Keywords: linear control system, uniform complete controllability, uniform global attainability.
@article{VUU_2017_27_2_a2,
     author = {A. A. Kozlov and I. V. Ints},
     title = {On uniform global attainability of two-dimensional linear systems with locally integrable coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {178--192},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/}
}
TY  - JOUR
AU  - A. A. Kozlov
AU  - I. V. Ints
TI  - On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 178
EP  - 192
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/
LA  - ru
ID  - VUU_2017_27_2_a2
ER  - 
%0 Journal Article
%A A. A. Kozlov
%A I. V. Ints
%T On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 178-192
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/
%G ru
%F VUU_2017_27_2_a2
A. A. Kozlov; I. V. Ints. On uniform global attainability of two-dimensional linear systems with locally integrable coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 178-192. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/