On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 178-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear time-varying control system with locally integrable and integrally bounded coefficients \begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation} We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system \begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation} we study a question about the conditions for its uniform global attainability. The last property of the system (2) means existence of a matrix $U(t)$, $t\geqslant 0$, that ensure equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such $\sigma>0$ and $\gamma>0,$ that for any initial time $t_0\geqslant 0$ and initial condition $x(t_0)=x_0\in \mathbb{R}^n$ of the system (1) on the segment $[t_0,t_0+\sigma]$ there exists a measurable and bounded vector control $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ that transforms a vector of the initial state of the system into zero on that segment. It is proved that in two-dimensional case, i.e. when $n=2,$ the property of uniform complete controllability of the system (1) is a sufficient condition of uniform global attainability of the corresponding system (2).
Keywords: linear control system, uniform complete controllability, uniform global attainability.
@article{VUU_2017_27_2_a2,
     author = {A. A. Kozlov and I. V. Ints},
     title = {On uniform global attainability of two-dimensional linear systems with locally integrable coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {178--192},
     year = {2017},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/}
}
TY  - JOUR
AU  - A. A. Kozlov
AU  - I. V. Ints
TI  - On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 178
EP  - 192
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/
LA  - ru
ID  - VUU_2017_27_2_a2
ER  - 
%0 Journal Article
%A A. A. Kozlov
%A I. V. Ints
%T On uniform global attainability of two-dimensional linear systems with locally integrable coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 178-192
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/
%G ru
%F VUU_2017_27_2_a2
A. A. Kozlov; I. V. Ints. On uniform global attainability of two-dimensional linear systems with locally integrable coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 178-192. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a2/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M., 1966, 576 pp.

[2] Zaitsev V. A., “Global attainability and global Lyapunov reducibility of two-dimensional and three-dimensional linear control systems with the constant coefficients”, Vestn. Udmurt. Univ. Mat., 2003, no. 1, 31–62 (in Russian)

[3] Makarov E. K., Popova S. N., Controllability of asymptotic invariants of non-stationary linear systems, Belarus. Navuka, Minsk, 2012, 407 pp.

[4] Demidovich B. P., Lectures on the mathematical stability theory, Moscow State University, M., 1998, 624 pp. | MR

[5] Bogdanov Yu. S., “About the asymptotically equivalent linear differential systems”, Differ. Uravn., 1:6 (1965), 707–716 (in Russian) | Zbl

[6] Makarov E. K., Popova S. N., “The global controllability of a complete set of Lyapunov invariants for two-dimensional linear systems”, Differential Equations, 35:1 (1999), 97–107 | MR | Zbl

[7] Zaitsev V. A. Tonkov E. L., “Attainability, compatibility and V. M. Millionshchikov's method of rotations”, Russian Mathematics, 43:2 (1999), 42–52 | MR | Zbl

[8] Popova S. N., Tonkov E. L., “Control over the Lyapunov exponents of consistent systems. I”, Differential Equations, 30:10 (1994), 1556–1564 | MR | Zbl

[9] Popova S. N., Tonkov E. L., “Control of the Lyapunov exponents of consistent systems. II”, Differential Equations, 30:11 (1994), 1800–1807 | MR | Zbl

[10] Popova S. N., Tonkov E. L., “Control over Lyapunov exponents of consistent systems. III”, Differential Equations, 31:2 (1995), 209–218 | MR | Zbl

[11] Popova S. N., Tonkov E. L., “Uniform consistency of linear systems”, Differential Equations, 31:4 (1995), 672–674 | MR | Zbl

[12] Popova S. N., Tonkov E. L., “Consistent systems and control of Lyapunov exponents”, Differential Equations, 33:2 (1997), 226–235 | Zbl

[13] Popova S. N., “Equivalence between local attainability and complete controllability of linear systems”, Russian Mathematics, 46:6 (2002), 48–51 | MR | Zbl

[14] Popova S. N., “Global controllability of the complete set of Lyapunov invariants of periodic systems”, Differential Equations, 39:12 (2003), 1713–1723 | DOI | MR | Zbl

[15] Popova S. N., “On the global controllability of Lyapunov exponents of linear systems”, Differential Equations, 43:8 (2007), 1072–1078 | DOI | MR | Zbl

[16] Kozlov A. A., Makarov E. K., “About uniform global attainability of linear control systems in the non-degenerate case”, Vestn. Vitsebsk. Dzyarzh. Univ., 2007, no. 3(45), 100–109 (in Russian)

[17] Izobov N. A., “Linear systems of ordinary differential equations”, Journal of Soviet Mathematics, 5:1 (1976), 46–96 | DOI | Zbl | Zbl

[18] Kalman R. E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematica Mexicana, 5:1 (1960), 102–119 | MR | Zbl

[19] Gabdrakhimov A. F., Zaitsev V. A., “Lyapunov reducibility for four-dimensional linear stationary control systems in the class of the piecewise-constant control functions”, Vestn. Udmurt. Univ. Mat., 2006, no. 1, 25–40 (in Russian)

[20] Zaitsev V. A., “Criteria for uniform complete controllability of a linear system”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:2 (2015), 157–179 (in Russian) | DOI | Zbl

[21] Tonkov E. L., “A criterion of uniform controllability and stabilization of a linear recurrent system”, Differ. Uravn., 15:10 (1979), 1804–1813 (in Russian) | Zbl

[22] Horn R., Johnson C., Matrix analysis, Cambridge University Press, Cambridge, 1988 | MR

[23] Kozlov A. A., “On the partial case of global Lyapunov's reducibility of two-dimensional systems”, Vestn. Vitsebsk. Dzyarzh. Univ., 2008, no. 3(49), 105–110 (in Russian)

[24] Kozlov A. A., Control over Lyapunov's exponents of a differential systems with break and fast oscillated coefficients, Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Minsk, 2008, 20 pp. (in Russian)

[25] Kozlov A. A., Ints I. V., “On the global Lyapunov reducibility of two-dimensional linear systems with locally integrable coefficients”, Differential Equation, 52:6 (2016), 699–721 | DOI | MR | Zbl