Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 162-177
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
optimal boundary control, sequential optimization, dual regularization, stability, Lagrange principle, Pontryagin's maximum principle.
Mots-clés : parabolic equation, pointwise state constraint in the Lebesgue space
                    
                  
                
                
                Mots-clés : parabolic equation, pointwise state constraint in the Lebesgue space
@article{VUU_2017_27_2_a1,
     author = {A. A. Gorshkov and M. I. Sumin},
     title = {Regularization of the {Pontryagin} maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in {Lebesgue} spaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {162--177},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Gorshkov AU - M. I. Sumin TI - Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 162 EP - 177 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/ LA - ru ID - VUU_2017_27_2_a1 ER -
%0 Journal Article %A A. A. Gorshkov %A M. I. Sumin %T Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 162-177 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/ %G ru %F VUU_2017_27_2_a1
A. A. Gorshkov; M. I. Sumin. Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 162-177. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/