Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 162-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.
Keywords: optimal boundary control, sequential optimization, dual regularization, stability, Lagrange principle, Pontryagin's maximum principle.
Mots-clés : parabolic equation, pointwise state constraint in the Lebesgue space
@article{VUU_2017_27_2_a1,
     author = {A. A. Gorshkov and M. I. Sumin},
     title = {Regularization of the {Pontryagin} maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in {Lebesgue} spaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {162--177},
     year = {2017},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/}
}
TY  - JOUR
AU  - A. A. Gorshkov
AU  - M. I. Sumin
TI  - Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 162
EP  - 177
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/
LA  - ru
ID  - VUU_2017_27_2_a1
ER  - 
%0 Journal Article
%A A. A. Gorshkov
%A M. I. Sumin
%T Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 162-177
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/
%G ru
%F VUU_2017_27_2_a1
A. A. Gorshkov; M. I. Sumin. Regularization of the Pontryagin maximum principle in the problem of optimal boundary control for a parabolic equation with state constraints in Lebesgue spaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 2, pp. 162-177. http://geodesic.mathdoc.fr/item/VUU_2017_27_2_a1/

[1] Vasil'ev F. P., Optimization methods, v. 1, 2, Moscow Center for Continuous Mathematical Education, M., 2011, 620 pp.; 432 pp.

[2] Sumin M. I., “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44 | DOI | DOI | MR | Zbl

[3] Sumin M. I., “A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation”, Comput. Math. Math. Phys., 44:11 (2004), 1903–1921 | MR | Zbl

[4] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Comput. Math. Math. Phys., 47:4 (2007), 579–600 | DOI | MR | Zbl

[5] Sumin M. I., Ill-posed problems and their solutions. Materials for lectures for senior students, Textbook, Lobachevsky State University of Nizhnii Novgorod, Nizhnii Novgorod, 2009, 284 pp.

[6] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl

[7] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Applied Mathematics, 3:10 (2012), 1334–1350 | DOI

[8] Raymond J.-P., Zidani H., “Pontryagin's principle for state-constrained control problems governed by parabolic equations with unbounded controls”, SIAM J. Control Optim., 36:6 (1998), 1853–1879 | DOI | MR | Zbl

[9] Casas E., Raymond J.-P., Zidani H., “Pontryagin's principle for local solutions of control problems with mixed control-state constraints”, SIAM J. Control Optim., 39:4 (2000), 1182–1203 | DOI | MR | Zbl

[10] Sumin M. I., “Suboptimal control of a semilinear elliptic equation with a phase constraint and a boundary control”, Differential Equations, 37:2 (2001), 281–300 | DOI | MR | Zbl

[11] Sumin M. I., “Parametric dual regularization for an optimal control problem with pointwise state constraints”, Comput. Math. Math. Phys., 49:12 (2009), 1987–2005 | DOI | MR

[12] Sumin M. I., “Regularized sequential Pontryagin maximum principle in the convex optimal control with pointwise state constraints”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 1(39), 130–133 (in Russian)

[13] Sumin M. I., “Stable sequential Pontryagin maximum principle in optimal control problem with state constraints”, Proc. XII All-Russia Conf. on Control Problems (RCCP-2014), Inst. of Control Problems, Moscow, 2014, 796–808 (in Russian) | Zbl

[14] Sumin M. I., “Stable sequential Pontryagin maximum principle in optimal control for distributed systems”, System dynamic and control processes, Proceedings of Int. Conf. Dedicated to the 90th Anniversary of Academician N. N. Krasovskii, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2015, 301–308 (in Russian)

[15] Sumin M. I., “Subdifferentiability of value functions and regularization of Pontryagin maximum principle in optimal control for distributed systems”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 20:5 (2015), 1461–1477 (in Russian)

[16] Sumin M. I., “On the stable sequential Lagrange principle in the convex programming and its applications for solving unstable problems”, Trudy Inst. Mat. Mekh. Ural Otd. Ross. Akad. Nauk, 19, no. 4 (2013), 231–240 (in Russian)

[17] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 531 pp. | MR | Zbl

[18] Sumin M. I., “Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals”, Proc. Steklov Inst. Math., 275, suppl. 1 (2011), 161–177 | DOI | MR | Zbl

[19] Gorshkov A. A., “On dual regularization in convex programming in uniformly convex space”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, 2013, no. 3(1), 172–180 (in Russian)

[20] Gorshkov A. A., Sumin M. I., “The stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications”, Russian Mathematics, 59:1 (2015), 11–23 | DOI | MR | Zbl

[21] Gorshkov A. A., “Regularized Pontryagin maximum principle in optimal control for a parabolic equation with phase constraints in Lebesgue spaces”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 20:5 (2015), 1104–1110 (in Russian)

[22] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and quasilinear equations of parabolic type, AMS, Providence, R.I., 1968, 648 pp. | MR

[23] Vladimirov A. A., Nesterov Yu. E., Chekanov Yu. N., “On uniformly convex functionals”, Mosc. Univ. Comput. Math. Cybern., 1978, no. 3, 10–21 | MR | Zbl

[24] Ekeland I., Temam R., Convex analysis and variational problems, SIAM, 1999, 402 pp. | MR

[25] Aubin J.-P., Ekeland I., Applied nonlinear analysis, John Wiley and Sons, New York, 1988, 584 pp. | MR

[26] Mordukhovich B. S., Variational analysis and generalized differentiation, v. I, Basic Theory, Springer, Berlin, 2006, 595 pp. | MR