Methods of conformal mappings of polyhedra in $\mathbb{R}^3$
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 60-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methods necessary to solve problems of conformal mapping of polyhedra in $\mathbb{R}^3$ are developed. The results are obtained with the use of quaternion algebra and geometric representations. The direct and inverse conformal mappings are defined: those of the upper half-space onto the unit ball, those of a ball crescent onto the dihedral angle and those of dihedral and polyhedral angles onto the upper half-space. Solutions to the direct and inverse problems of conformal mapping of the polyhedrons onto the upper half-space are found using the results obtained. The solution to the direct problem of conformal mapping is based on the results of the Christoffel–Schwarz theorem. The solution of the inverse problem is obtained by the method of successive conformal mappings. In general, the one-to-one mappings obtained are based on the fact that, by the Liouville theorem, all conformal diffeomorphisms of any area in the space are the Möbius transformations.
Keywords: conformal mapping, polyhedron, dihedral angle, polyhedral angle, upper half-space.
@article{VUU_2017_27_1_a5,
     author = {V. M. Radygin and I. S. Polyanskii},
     title = {Methods of conformal mappings of polyhedra in $\mathbb{R}^3$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {60--68},
     year = {2017},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a5/}
}
TY  - JOUR
AU  - V. M. Radygin
AU  - I. S. Polyanskii
TI  - Methods of conformal mappings of polyhedra in $\mathbb{R}^3$
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 60
EP  - 68
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a5/
LA  - ru
ID  - VUU_2017_27_1_a5
ER  - 
%0 Journal Article
%A V. M. Radygin
%A I. S. Polyanskii
%T Methods of conformal mappings of polyhedra in $\mathbb{R}^3$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 60-68
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a5/
%G ru
%F VUU_2017_27_1_a5
V. M. Radygin; I. S. Polyanskii. Methods of conformal mappings of polyhedra in $\mathbb{R}^3$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 60-68. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a5/

[1] Arkhipov N. S., Polyanskij I. S., Stepanov D. E., “The barycentric method for the field analysis in a regular waveguide with arbitrary cross-section”, Antenny, 2015, no. 1(212), 32–40 (in Russian)

[2] Polyansky I. S., “Poisson barycentric coordinates for multivariate approximation of scalar potential within an arbitrary area (Part 1)”, Vestn. Sarat. Gos. Tekh. Univ., 1:1(78) (2015), 30–36 (in Russian)

[3] Polyansky I. S., “Poisson barycentric coordinates for multivariate approximation of scalar potential within an arbitrary area (Part 2)”, Vestn. Sarat. Gos. Tekh. Univ., 1:1(78) (2015), 36–42 (in Russian)

[4] Fil'chakov P. F., Approximate methods of conformal mappings, Handbook, Naukova Dumka, Kiev, 1964, 536 pp.

[5] Radygin V. M., Polansky I. S., “Modified method of successive conformal mappings of polygonal domains”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2016, no. 1(39), 25–35 (in Russian) | DOI

[6] Sudbery A., “Quaternionic analysis”, Mathematical Proceedings of the Cambridge Philosophical Society, 85:2 (1979), 199–225 | DOI | MR | Zbl

[7] Ahlfors L., Möbius transformations in several dimensions, University of Minnesota, 1981 | MR

[8] Norden A. P., Theory of surfaces, Gos. Izd. Tekh. Teor. Lit., M., 1956, 260 pp.

[9] Lavrent'ev M. A., Shabat B. V., Methods of the theory of functions of a complex variable, Nauka, M., 1973, 736 pp.