The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 26-41
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a linear parabolic equation with distributed, initial and boundary controls and operator semiphase equality constraint. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space, and thirdly, it is resistant to error of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the dual regularization methods and iterative dual regularization. The results of model calculations of the concrete optimal control problem illustrating the work of the algorithm based on the regularized iterative Pontryagin maximum principle are presented. The problem of finding a control triple with minimal norm under a given equality constraint at the final instant of time or, in other words, the inverse final observation problem of finding a normal solution is used as a concrete model optimal control problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
optimal control, instability, iterative dual regularization, regularized iterative Lagrange principle, regularized iterative Pontryagin's maximum principle.
                    
                  
                
                
                @article{VUU_2017_27_1_a2,
     author = {F. A. Kuterin and M. I. Sumin},
     title = {The regularized iterative {Pontryagin} maximum principle in optimal control. {II.} {Optimization} of a distributed system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/}
}
                      
                      
                    TY - JOUR AU - F. A. Kuterin AU - M. I. Sumin TI - The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2017 SP - 26 EP - 41 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/ LA - ru ID - VUU_2017_27_1_a2 ER -
%0 Journal Article %A F. A. Kuterin %A M. I. Sumin %T The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2017 %P 26-41 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/ %G ru %F VUU_2017_27_1_a2
F. A. Kuterin; M. I. Sumin. The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 26-41. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/
