The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 26-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a linear parabolic equation with distributed, initial and boundary controls and operator semiphase equality constraint. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space, and thirdly, it is resistant to error of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the dual regularization methods and iterative dual regularization. The results of model calculations of the concrete optimal control problem illustrating the work of the algorithm based on the regularized iterative Pontryagin maximum principle are presented. The problem of finding a control triple with minimal norm under a given equality constraint at the final instant of time or, in other words, the inverse final observation problem of finding a normal solution is used as a concrete model optimal control problem.
Keywords: optimal control, instability, iterative dual regularization, regularized iterative Lagrange principle, regularized iterative Pontryagin's maximum principle.
@article{VUU_2017_27_1_a2,
     author = {F. A. Kuterin and M. I. Sumin},
     title = {The regularized iterative {Pontryagin} maximum principle in optimal control. {II.} {Optimization} of a distributed system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {26--41},
     year = {2017},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/}
}
TY  - JOUR
AU  - F. A. Kuterin
AU  - M. I. Sumin
TI  - The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 26
EP  - 41
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/
LA  - ru
ID  - VUU_2017_27_1_a2
ER  - 
%0 Journal Article
%A F. A. Kuterin
%A M. I. Sumin
%T The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 26-41
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/
%G ru
%F VUU_2017_27_1_a2
F. A. Kuterin; M. I. Sumin. The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 26-41. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a2/

[1] Kuterin F. A., Sumin M. I., “The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:4 (2016), 474–489 (in Russian) | DOI

[2] Sumin M. I., “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 22–44 | DOI | DOI | MR | Zbl

[3] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and quasilinear equations of parabolic type, AMS, Providence, R.I., 1968, 648 pp. | MR

[4] Plotnikov V. I., “The convergence of finite-dimensional approximations (in the problem of the optimal heating of an inhomogeneous body of arbitrary shape)”, USSR Computational Mathematics and Mathematical Physics, 8:1 (1968), 182–211 | DOI | MR | Zbl

[5] Plotnikov V. I., “An energy inequality and the overdeterminacy property of a system of eigenfunctions”, Mathematics of the USSR-Izvestiya, 2:4 (1968), 695–707 | DOI | MR | Zbl

[6] Kuterin F. A., “On stable Lagrange principle in iterative form in convex programming and its application for solving unstable operator equations of the first kind”, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 20:5 (2015), 1239–1246 (in Russian)

[7] Kuterin F. A., Sumin M. I., “On the regularized Lagrange principle in the iterative form and its application for solving unstable problems”, Matematicheskoe Modelirovanie, 28:11 (2016), 3–18 (in Russian)

[8] Kuterin F. A., Sumin M. I., “Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems”, Computational Mathematics and Mathematical Physics, 57:1 (2017), 71–82 | DOI | DOI | MR

[9] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 531 pp. | MR | Zbl

[10] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1489–1509 | DOI | MR | Zbl

[11] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Applied Mathematics, 3 (2012), 1334–1350 | DOI

[12] Sumin M. I., “On the stable sequential Lagrange principle in convex programming and its application for solving unstable problems”, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 19, no. 4 (2013), 231–240 (in Russian)

[13] Plotnikov V. I., “Uniqueness and existence theorems and apriori properties of generalized solutions”, Soviet Mathematics. Doklady, 6 (1965), 1405–1407 | MR | Zbl

[14] Kuzenkov O. A., Plotnikov V. I., “The existence and uniqueness of generalized solution of linear vector equation of parabolic type in third boundary value problem”, Matematicheskoe modelirovanie i metody optimizatsii, Gorkii State University, Gorkii, 1989, 132–144 (in Russian) | Zbl

[15] Sumin M. I., “Maximum principle in suboptimal control theory of distributed-parameter systems with operator constraints in a Hilbert space”, Journal of Mathematical Sciences, 104:2 (2001), 1060–1086 | DOI | MR | Zbl

[16] Sumin M. I., “A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation”, Computational Mathematics and Mathematical Physics, 44:11 (2004), 1903–1921 | MR | Zbl

[17] Arrow K. J., Hurwicz L., Uzawa H., Studies in linear and nonlinear programming, Stanford University Press, Stanford, 1958 | MR

[18] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990, 488 pp.; Minoux M., Programation mathematique. Theorie et algorithmes, v. 1, Dunod, Paris, 1983, 294 pp. ; v. 2, 236 pp. | MR

[19] Crank J., Nicolson P., “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type”, Proc. Camb. Phil. Soc., 43 (1947), 50–67 | DOI | MR | Zbl