A new approach to multicriteria problems under uncertainty
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The applicability and novelty of this research lies in that the decision-maker in a multicriteria problem aims not only to maximize guaranteed values of each criterion, but also to minimize the guaranteed risks accompanying the said maximization. The topic of the research lies at the interface of the multicriteria problem theory and the Savage-Niehans minimax regret principle: the concept of a weakly effective estimate has been derived from the MP theory, while estimation of risks with values of the Savage–Niehans regret function has been derived from the minimax regret principle. The scope of this research is limited to interval uncertainties: the decision-maker only knows the limits of the interval, and probabilistic characteristics are missing. A new term is introduced, namely, “strongly guaranteed solution under outcomes and risks” its existence for “regular”-confined-strategies for the mathematical programming is established. As an example of a practical application, the problem of diversification of a multi-currency deposit is suggested and solved.
Keywords: multicriteria problems, strong guarantee, slater and pareto maximum, minimax regret
Mots-clés : deposit diversification.
@article{VUU_2017_27_1_a0,
     author = {M. I. Vysokos and V. I. Zhukovskii and M. M. Kirichenko and S. P. Samsonov},
     title = {A new approach to multicriteria problems under uncertainty},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--16},
     year = {2017},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a0/}
}
TY  - JOUR
AU  - M. I. Vysokos
AU  - V. I. Zhukovskii
AU  - M. M. Kirichenko
AU  - S. P. Samsonov
TI  - A new approach to multicriteria problems under uncertainty
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2017
SP  - 3
EP  - 16
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a0/
LA  - ru
ID  - VUU_2017_27_1_a0
ER  - 
%0 Journal Article
%A M. I. Vysokos
%A V. I. Zhukovskii
%A M. M. Kirichenko
%A S. P. Samsonov
%T A new approach to multicriteria problems under uncertainty
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2017
%P 3-16
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a0/
%G ru
%F VUU_2017_27_1_a0
M. I. Vysokos; V. I. Zhukovskii; M. M. Kirichenko; S. P. Samsonov. A new approach to multicriteria problems under uncertainty. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 27 (2017) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/VUU_2017_27_1_a0/

[1] Wald A., “Contribution to the theory of statistical estimation testing hypothesis”, The Annals of Mathematical Statistics, 10 (1939), 299–326 | DOI | MR

[2] Niehans J., “Zur preisbildung bei ungewissen erwartungen”, Schweizerische Zeitschrift für Volkswirtschaft und Statistic, 84:5 (1948), 433–456

[3] Savage L. J., “The theory of statistical decision”, Journal of the American Statistical Association, 46:253 (1951), 55–67 | DOI | Zbl

[4] Cheremnykh Yu. N., Microeconomics. Advanced level, Infra, M., 2008, 843 pp.

[5] Zhukovskii V. I., Risks in conflict situations, URSS, M., 2011, 330 pp.

[6] Sirazetdinov T. K., Sirazetdinov R. T., “Problems of risk and its modeling”, Problemy Chelovecheskogo Riska, 2007, no. 1, 31–43 (in Russian)

[7] Shakhov V. V., Introduction to insurance. Economic aspect, Finansy i Statistika, M., 2001, 286 pp.

[8] Tsvetkova E. V., Arlyukova N. O., The risk in economic activity, Institute of Foreign Economic Relations, Economics and Law, St. Petersburg, 2002, 64 pp.

[9] Markowitz H., “Portfolio selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI | MR

[10] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. I. Analogue of a saddle-point”, Mat. Teor. Igr Pril., 5:1 (2013), 27–44 (in Russian) | Zbl

[11] Zhukovskiy V. I., Kudryavtsev K. N., “Equilibrating conflicts under uncertainty. II. Analogue of a maximin”, Mat. Teor. Igr Pril., 5:2 (2013), 3–45 (in Russian)

[12] Zhukovskiy V. I., Salukvadze M. E., The vector-valued maximin, Academic Press, N.Y. etc., 1994, 404 pp. | DOI | MR | Zbl

[13] Morozov V. V., Sukharev A. G., Fedorov V. V., Operations research in tasks and exercises, Vysshaya Shkola, M., 1986, 285 pp.

[14] Podinovskii V. V., Nogin V. D., Pareto optimal solutions of multicriteria problems, Fizmatgiz, M., 2007, 255 pp.

[15] Arrow K. J., Hurwicz L., Uzawa H., Studies in linear and nonlinear programming, Stanford University Press, Stanford, 1958 | MR

[16] Zhukovskiy V. I., Molostvov V. S., Topchisvili A. L., “Proplem of multicurrency deposit diversification — three possible approaches to risk accounting”, International Journal of Operations and Quantitative Management, 20:1 (2014), 1–15

[17] Kapitonenko V. V., Financial mathematics and its applications, Prior, M., 2000, 140 pp.

[18] Zhukovskii V. I., Kirichenko M. M., “Risks and outcomes in multicriteria problem under uncertainty”, Upravlenie Riskom, 18:2 (2016), 17–28 (in Russian)