On the solution of control problems with fixed terminal time
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 543-564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the nonlinear controlled system in a finite-dimensional Euclidean space in a finite time interval. We study the problem of a system approaching a given compact set in finite time. Approximate solution of the approaching problem is discussed. The approach used to construct an approximate solution is based on constructions based on the notion of a set of solvability of the approaching problem. The concept of correcting control with and without additional operating influences is introduced. We propose a scheme of approximate backward construction of the solvability set, as well as the scheme of control software, which allows finding approximately a solution to the approaching problem. In it, the operating influence breaks down into “main” and “correcting”. An estimate of the deviation of the operated system from the target set at the final moment is constructed and it is shown that the use of additional correcting control in the control process can essentially improve the result of control.
Keywords: control problem, approaching problem, correcting control, controlled system, integral funnel, set of solvability.
@article{VUU_2016_26_4_a8,
     author = {V. N. Ushakov and A. A. Ershov},
     title = {On the solution of control problems with fixed terminal time},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {543--564},
     year = {2016},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a8/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Ershov
TI  - On the solution of control problems with fixed terminal time
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 543
EP  - 564
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a8/
LA  - ru
ID  - VUU_2016_26_4_a8
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Ershov
%T On the solution of control problems with fixed terminal time
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 543-564
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a8/
%G ru
%F VUU_2016_26_4_a8
V. N. Ushakov; A. A. Ershov. On the solution of control problems with fixed terminal time. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 543-564. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a8/

[1] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 458 pp.

[2] Kurzhanskii A. B., Selected works, Moscow State University, M., 2009, 756 pp.

[3] Osipov Yu. S., Selected works, Moscow State University, M., 2009, 654 pp.

[4] Ushakov V. N., Ukhobotov V. I., Ushakov A. V., Parshikov G. V., “On solving approach problems for control systems”, Proceedings of the Steklov Institute of Mathematics, 291:1 (2015), 263–278 | DOI | DOI | MR | Zbl

[5] Nikol'skii M. S., “On the alternating integral of Pontrjagin”, Mathematics of the USSR-Sbornik, 44:1 (1983), 125–132 | DOI | Zbl

[6] Ushakov A. V., “On one version of approximate permitting control calculation in a problem of approaching”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 4, 94–107 (in Russian) | DOI

[7] Ushakov V. N., Lavrov N. G., Ushakov A. V., “Construction of solutions in an approach problem of a stationary control system”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 20, no. 4 (2014), 277–286 (in Russian)

[8] Arutyunov A. V., Lections on the convex analysis, Fizmatlit, M., 2014, 188 pp.

[9] Arutyunov A. V., “Covering mapping in metric spaces and fixed points”, Doklady Mathematics, 76:2 (2007), 665–668 | DOI | MR | Zbl

[10] Arutyunov A. V., “Stability of coincidence points and properties of covering mappings”, Mathematical Notes, 86:2 (2009), 153–158 | DOI | DOI | MR | Zbl

[11] Ushakov V. N., Khripunov A. P., “Approximate construction of solutions in game-theoretic control problems”, Journal of Applied Mathematics and Mechanics, 61:3 (1997), 401–408 | DOI | MR | Zbl

[12] Ortega J. M., Rheinboldt W. C., Iterative solution of nonlinear equations in several variables, SIAM, Philadelphia, 1970, 572 pp. | MR