The quasi-levels of the Dirac two-dimensional difference operator in a strip
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 535-542 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the last decade, topological insulators have been actively studied in the physics literature. Topological insulator is a special type of material that is within the scope of an insulator and conducts electricity on the surface. Topological insulators have interesting physical properties, for example, the topological properties of this material can be stably maintained up to high temperatures. Topological insulators can be used in a wide variety of microelectronic devices ranging from very fast and efficient processors to topological quantum computers. The electron in topological insulators is described by the massless Dirac operator. Such operators in quasi-one-dimensional structures (for example, strips with different boundary conditions) are very interesting not only from a physical, but also from a mathematical point of view, but they are still poorly understood by mathematicians. In this article, we have found the eigenvalues of the Dirac difference operator for a potential of the form $ V_0 \delta_{n0}$. We have studied the quasi-levels (eigenvalues and resonances) of the operator in the case of small potentials.
Keywords: Dirac difference operator, resolution, spectrum, quasi-level, eigenvalues, resonance.
@article{VUU_2016_26_4_a7,
     author = {T. S. Tinyukova},
     title = {The quasi-levels of the {Dirac} two-dimensional difference operator in a strip},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {535--542},
     year = {2016},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a7/}
}
TY  - JOUR
AU  - T. S. Tinyukova
TI  - The quasi-levels of the Dirac two-dimensional difference operator in a strip
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 535
EP  - 542
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a7/
LA  - ru
ID  - VUU_2016_26_4_a7
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%T The quasi-levels of the Dirac two-dimensional difference operator in a strip
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 535-542
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a7/
%G ru
%F VUU_2016_26_4_a7
T. S. Tinyukova. The quasi-levels of the Dirac two-dimensional difference operator in a strip. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 535-542. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a7/

[1] Hasan M. Z., Kane C. L., “Colloquium: topological insulators”, Rev. Mod. Phys., 82 (2010), 3045–3067 | DOI

[2] Bardarson J. H., Moore J. E., “Quantum interference and Aharonov–Bohm oscillations in topological insulators”, Reports on Progress in Physics, 76 (2013), 056501 | DOI

[3] Blokhintsev D. I., Foundations of quantum mechanics, Vysshaya shkola, M., 1963, 619 pp.

[4] Yokoyama T., Tanaka Y., Nagaosa N., “Anomalous magnetoresistance of a two-dimensional ferromagnet/ferromagnet junction on the surface of a topological insulator”, Physical Review B, 81 (2010), 121401, 4 pp. | DOI

[5] Chuburin Y. P., “Electron scattering on the surface of a topological insulator”, Journal of Physics A: Mathematical and Theoretical, 47 (2014), 255203, 13 pp. | DOI | MR | Zbl

[6] Tinyukova T. S., “Two-dimensional difference Dirac operator in the strip”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 93–100 (in Russian) | DOI | Zbl

[7] Shabat B. V., Introduction to complex analysis, v. II, Functions of several variables, Nauka, M., 1976, 400 pp.

[8] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Mir, M., 1982, 430 pp.

[9] Morozova L. I., Chuburin Y. P., “On levels of the one-dimensional discrete Schrödinger operator with a decreasing small potential”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2004, no. 1(29), 85–94 (in Russian)

[10] Albeverio S. et al., Solvable models in quantum mechanics, Mir, M., 1991, 568 pp.