An approach to analysis of the set of truth: unlocking of predicate
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 525-534 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The term “predicate unlocking” is understood as the reduction of the problem of finding and studying the set of truth of a predicate to the problem of finding and studying the set of fix points of a map. Predicate unlocking provides opportunities for additional investigation of the truth set and also allows one to build the elements of this set with particular properties. There are examples of nontrivial predicate unlocking such as: the predicate “be a stable (weakly invariant) set”, the predicate “be a nonanticipatory selector”, the predicate “be a saddle point”, and the predicate “be a Nash equilibrium”. In these cases, the question of the a priori evaluation of the possibility of unlocking this or other predicate of interest and the question of constructing a corresponding unlocking map remained beyond consideration: the unlocking mappings were provided as ready-made objects. In this note we try to partly close this gap: we provide a formal definition of the predicate unlocking operation, methods for constructing and calculating of the unlocking mappings and their basic properties. As an illustration, the “routine” construction of unlocking mapping for the predicate “be a Nash equilibrium” is carried out. The described approach is far from universality, but, at least, it can be applied to all aforementioned positive examples.
Keywords: truth set of predicate, fixed points of map, Nash equilibrium.
@article{VUU_2016_26_4_a6,
     author = {D. A. Serkov},
     title = {An approach to analysis of the set of truth: unlocking of predicate},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {525--534},
     year = {2016},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a6/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - An approach to analysis of the set of truth: unlocking of predicate
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 525
EP  - 534
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a6/
LA  - ru
ID  - VUU_2016_26_4_a6
ER  - 
%0 Journal Article
%A D. A. Serkov
%T An approach to analysis of the set of truth: unlocking of predicate
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 525-534
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a6/
%G ru
%F VUU_2016_26_4_a6
D. A. Serkov. An approach to analysis of the set of truth: unlocking of predicate. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 525-534. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a6/

[1] Kakutani S., “A generalization of Brouwer's fixed point theorem”, Duke Mathematical Journal, 8:3 (1941), 457–459 | DOI | MR

[2] Nash J., “Non-cooperative games”, Annals of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl

[3] Nikaido H., “On von Neumann's minimax theorem”, Pacific Journal of Mathematics, 4:1 (1954), 65–72 | DOI | MR | Zbl

[4] Chentsov A. G., “On the structure of a game problem of convergence”, Sov. Math. Dokl., 16:5 (1975), 1404–1408 | Zbl

[5] Chentsov A. G., “On a game problem of guidance”, Sov. Math., Dokl., 17 (1976), 73–77 | Zbl

[6] Chentsov A. G., “Non-anticipating selections of multivalued mappings”, Differ. Uravn. Protsessy Upr., 1998, no. 2, 1–64 (in Russian)

[7] Chentsov A. G., “Hereditary multiselectors of multivalued mappings and their construction by iterative methods”, Differ. Uravn. Protsessy Upr., 1999, no. 3, 1–54 (in Russian)

[8] Serkov D. A., “On fixed point theory and its applications to equilibrium models”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software, 9:1 (2016), 20–31 | DOI | Zbl

[9] Kuratowski K., Mostowski A., Theory of sets, Mir, M., 1970, 416 pp. | MR

[10] Engelking R., General topology, PWN, Warszawa, 1985, 752 pp. | MR | MR