Mots-clés : Boussinesq equation, existence
@article{VUU_2016_26_4_a4,
author = {Ya. T. Megraliev and F. Kh. Alizade},
title = {Inverse boundary value problem for a {Boussinesq} type equation of fourth order with nonlocal time integral conditions of the second kind},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {503--514},
year = {2016},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a4/}
}
TY - JOUR AU - Ya. T. Megraliev AU - F. Kh. Alizade TI - Inverse boundary value problem for a Boussinesq type equation of fourth order with nonlocal time integral conditions of the second kind JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 503 EP - 514 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a4/ LA - ru ID - VUU_2016_26_4_a4 ER -
%0 Journal Article %A Ya. T. Megraliev %A F. Kh. Alizade %T Inverse boundary value problem for a Boussinesq type equation of fourth order with nonlocal time integral conditions of the second kind %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 503-514 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a4/ %G ru %F VUU_2016_26_4_a4
Ya. T. Megraliev; F. Kh. Alizade. Inverse boundary value problem for a Boussinesq type equation of fourth order with nonlocal time integral conditions of the second kind. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 503-514. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a4/
[1] Samarskii A. A., “On some problems of theory of differential equations”, Differ. Uravn., 16:11 (1980), 1925–1935 (in Russian)
[2] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | Zbl
[3] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matematicheskoe Modelirovanie, 12:1 (2000), 94–103 (in Russian) | Zbl
[4] Pul'kina L. S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics, 56:4 (2012), 62–69 | DOI | MR | Zbl
[5] Kirichenko S. V., “On a boundary value problem for mixed type equation with nonlocal initial conditions in the rectangle”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 3(32), 185–189 | DOI
[6] Varlamov V. V., “Asymptotic behavior of solutions of the damped Boussinesq equation in two space dimensions”, International Journal of Mathematics and Mathematical Sciences, 22:1 (1999), 131–145 | DOI | MR | Zbl
[7] Yan Z. Y., Xie F. D., Zhang H. Q., “Symmetry reductions, integrability and solitary wave solutions to high-order modified Boussinesq equations with damping term”, Communications in Theoretical Physics, 36:1 (2001), 1–6 | DOI | MR | Zbl
[8] Megraliev Ya. T., “Inverse boundary value problem for second order elliptic equation with additional integral condition”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 1, 32–40 | DOI
[9] Khudaverdiev K. I., Veliev A. A., Investigation of the one-dimensional mixed problem for a class of the pseudo-hyperbolic equations of the third order with the nonlinear operator at the right-hand side, Chashyogly, Baku, 2010, 168 pp.