@article{VUU_2016_26_4_a3,
author = {Ya. Yu. Larina and L. I. Rodina},
title = {Asymptotically stable sets of control systems with impulse actions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {490--502},
year = {2016},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/}
}
TY - JOUR AU - Ya. Yu. Larina AU - L. I. Rodina TI - Asymptotically stable sets of control systems with impulse actions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 490 EP - 502 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/ LA - ru ID - VUU_2016_26_4_a3 ER -
%0 Journal Article %A Ya. Yu. Larina %A L. I. Rodina %T Asymptotically stable sets of control systems with impulse actions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 490-502 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/ %G ru %F VUU_2016_26_4_a3
Ya. Yu. Larina; L. I. Rodina. Asymptotically stable sets of control systems with impulse actions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 490-502. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/
[1] Samoilenko A. M., Perestyuk N. A., Impulsive differential equations, Vishcha shkola, Kiev, 1987, 288 pp.
[2] Bainov D. D., Simeonov P. S., Systems with impulse effect: stability, theory and applications, Halsted Press, N. Y., 1989, 255 pp. | MR | Zbl
[3] Perestyuk N. A., Plotnikov V. I., Samoilenko A. M., Skripnik N. V., Impulsive differential equations with multivalued and discontinuous right hand side, Institut of Mathematics, National Academy of Science of Ukraine, Kiev, 2007, 428 pp.
[4] Ignat'ev A. O., “Method of Lyapunov functions in problems of stability of solutions of systems of differential equations with impulse action”, Sbornik: Mathematics, 194:10 (2003), 1543–1558 | DOI | DOI | MR | Zbl
[5] Gladilina R. I., Ignat'ev A. O., “On the stability of periodic impulsive systems”, Mathematical Notes, 76:1 (2004), 41–47 | DOI | DOI | MR | Zbl
[6] Perestyuk N. A., Chernikova O. S., “On the stability of invariant sets of discontinuous dynamical systems”, Ukrainian Mathematical Journal, 53:1 (2001), 91–98 | DOI | MR | Zbl
[7] Anashkin O. V., Dovzhik T. V., Mit'ko O. V., “Stability of solutions of differential equations in the availability of impulse actions”, Dinamicheskie Sistemy, 2010, no. 28, 3–10 (in Russian)
[8] Larina Ya. Yu., “Lyapunov functions and comparison theorems for control systems with impulsive actions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 51–59 (in Russian) | DOI | Zbl
[9] Larina Ya. Yu., “Weak asymptotic stability of control systems with impulsive actions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 68–78 (in Russian) | DOI
[10] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262:1 (2008), 194–212 | DOI | MR | Zbl
[11] Panasenko E. A., Tonkov E. L., “Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems”, Proceedings of the Steklov Institute of Mathematics, 268, suppl. 1 (2010), 204–221 | DOI | MR
[12] Holling C. S., “The components of predation as revealed by a study of small mammal predation of the European pine sawfly”, The Canadian Entomologist, 91:5 (1959), 293–320 | DOI
[13] Filippov A. F., Differential equations with discontinuous right-hand side, Nauka, M., 1985, 223 pp. | MR
[14] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164
[15] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl
[16] Federer H., Geometric theory of measure, Nauka, M., 1987, 761 pp. | MR
[17] Chaplygin S. A., A new method of approximate integration of differential equations, Gostekhizdat, M.–L., 1950, 102 pp.
[18] Blagodatskikh V. I., Filippov A. F., “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259 | Zbl | Zbl
[19] Riznichenko G. Yu., Lectures on mathematical models in biology, v. 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.
[20] Kuzenkov O. A., Ryabova E. A., Mathematical modeling of processes of selection, Nizhnii Novgorod State University, Nizhnii Novgorod, 2007, 324 pp.