Asymptotically stable sets of control systems with impulse actions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 490-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We get sufficient conditions for asymptotic stability and weak asymptotic stability of a given set $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ with respect to the control system with impulse actions. We assume that the function $t\mapsto M(t)$ is continuous in the Hausdorff metric and for each $t \in [t_0,+\infty)$ the set $M(t)$ is nonempty and closed. Also, we obtain conditions under which for every solution $x(t,x_0)$ of the control system that leaves a sufficiently small neighborhood of the set $M(t_0)$ there exists an instant $t^*$ such that point $(t,x(t,x_0))$ belongs to $\mathfrak M$ for all $t\in[t^*,+\infty).$ Some of the statements presented here are analogues of the results obtained by E.A. Panasenko and E.L.Tonkov for systems with impulses, and in other statements the specificity of impulse actions is essentially used. The results of this paper are illustrated by the “pest–bioagents” model with impulse control and we assume that the addition of bioagents (natural enemies of the given pests) occur at fixed instants of time and the number of pests consumed on average by one biological agent per unit time is given by the trophic Holling function. We obtain conditions for asymptotic stability of the set $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ where $x_1=y_1/K,$ $y_1$ is the size of the population of pests and $K$ is the capacity of environment.
Keywords: control systems with impulse actions, Lyapunov functions, asymptotically stable sets.
@article{VUU_2016_26_4_a3,
     author = {Ya. Yu. Larina and L. I. Rodina},
     title = {Asymptotically stable sets of control systems with impulse actions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {490--502},
     year = {2016},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/}
}
TY  - JOUR
AU  - Ya. Yu. Larina
AU  - L. I. Rodina
TI  - Asymptotically stable sets of control systems with impulse actions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 490
EP  - 502
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/
LA  - ru
ID  - VUU_2016_26_4_a3
ER  - 
%0 Journal Article
%A Ya. Yu. Larina
%A L. I. Rodina
%T Asymptotically stable sets of control systems with impulse actions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 490-502
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/
%G ru
%F VUU_2016_26_4_a3
Ya. Yu. Larina; L. I. Rodina. Asymptotically stable sets of control systems with impulse actions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 490-502. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a3/

[1] Samoilenko A. M., Perestyuk N. A., Impulsive differential equations, Vishcha shkola, Kiev, 1987, 288 pp.

[2] Bainov D. D., Simeonov P. S., Systems with impulse effect: stability, theory and applications, Halsted Press, N. Y., 1989, 255 pp. | MR | Zbl

[3] Perestyuk N. A., Plotnikov V. I., Samoilenko A. M., Skripnik N. V., Impulsive differential equations with multivalued and discontinuous right hand side, Institut of Mathematics, National Academy of Science of Ukraine, Kiev, 2007, 428 pp.

[4] Ignat'ev A. O., “Method of Lyapunov functions in problems of stability of solutions of systems of differential equations with impulse action”, Sbornik: Mathematics, 194:10 (2003), 1543–1558 | DOI | DOI | MR | Zbl

[5] Gladilina R. I., Ignat'ev A. O., “On the stability of periodic impulsive systems”, Mathematical Notes, 76:1 (2004), 41–47 | DOI | DOI | MR | Zbl

[6] Perestyuk N. A., Chernikova O. S., “On the stability of invariant sets of discontinuous dynamical systems”, Ukrainian Mathematical Journal, 53:1 (2001), 91–98 | DOI | MR | Zbl

[7] Anashkin O. V., Dovzhik T. V., Mit'ko O. V., “Stability of solutions of differential equations in the availability of impulse actions”, Dinamicheskie Sistemy, 2010, no. 28, 3–10 (in Russian)

[8] Larina Ya. Yu., “Lyapunov functions and comparison theorems for control systems with impulsive actions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 51–59 (in Russian) | DOI | Zbl

[9] Larina Ya. Yu., “Weak asymptotic stability of control systems with impulsive actions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 68–78 (in Russian) | DOI

[10] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262:1 (2008), 194–212 | DOI | MR | Zbl

[11] Panasenko E. A., Tonkov E. L., “Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems”, Proceedings of the Steklov Institute of Mathematics, 268, suppl. 1 (2010), 204–221 | DOI | MR

[12] Holling C. S., “The components of predation as revealed by a study of small mammal predation of the European pine sawfly”, The Canadian Entomologist, 91:5 (1959), 293–320 | DOI

[13] Filippov A. F., Differential equations with discontinuous right-hand side, Nauka, M., 1985, 223 pp. | MR

[14] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164

[15] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl

[16] Federer H., Geometric theory of measure, Nauka, M., 1987, 761 pp. | MR

[17] Chaplygin S. A., A new method of approximate integration of differential equations, Gostekhizdat, M.–L., 1950, 102 pp.

[18] Blagodatskikh V. I., Filippov A. F., “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259 | Zbl | Zbl

[19] Riznichenko G. Yu., Lectures on mathematical models in biology, v. 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.

[20] Kuzenkov O. A., Ryabova E. A., Mathematical modeling of processes of selection, Nizhnii Novgorod State University, Nizhnii Novgorod, 2007, 324 pp.