@article{VUU_2016_26_4_a2,
author = {F. A. Kuterin and M. I. Sumin},
title = {The regularized iterative {Pontryagin} maximum principle in optimal control. {I.~Optimization} of a lumped system},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {474--489},
year = {2016},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/}
}
TY - JOUR AU - F. A. Kuterin AU - M. I. Sumin TI - The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 474 EP - 489 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/ LA - ru ID - VUU_2016_26_4_a2 ER -
%0 Journal Article %A F. A. Kuterin %A M. I. Sumin %T The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 474-489 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/ %G ru %F VUU_2016_26_4_a2
F. A. Kuterin; M. I. Sumin. The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 474-489. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/
[1] Sumin M. I., “Parametric dual regularization for an optimal control problem with pointwise state constraints”, Comput. Math. Math. Phys., 49:12 (2009), 1987–2005 | DOI | MR
[2] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl
[3] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Applied Mathematics, 3 (2012), 1334–1350 | DOI
[4] Sumin M. I., “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44 | DOI | DOI | MR | Zbl
[5] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Comput. Math. Math. Phys., 47:4 (2007), 579–600 | DOI | MR | Zbl
[6] Sumin M. I., Ill-posed problems and their solutions. Materials for lectures for senior students, Textbook, Lobachevsky State University of Nizhni Novgorod, 2009
[7] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 531 pp. | MR | Zbl
[8] Sumin M. I., “Suboptimal control of distributed-parameter systems: Minimizing sequences and the value function”, Comput. Math. Math. Phys., 37:1 (1997), 21–39 | MR | Zbl
[9] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proceedings and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993, 153 pp. ; 432 с. | MR | Zbl
[10] Vasil'ev F. P., Optimization methods, v. 1, 2, Moscow Center for Continuous Mathematical Education, M., 2011, 620 pp.; 432 pp.
[11] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Nauka, M., 1979, 432 pp.
[12] Aubin J.-P., L'analyse non lineaire et ses motivations economiques, Masson, Paris–New York, 1984, 214 pp. | MR | MR
[13] Arrow K. J., Hurwicz L., Uzawa H., Studies in linear and nonlinear programming, Staford University Press, Stanford, 1958 | MR
[14] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990, 488 pp. ; Minoux M., Programation mathematique. Theorie et algorithmes, v. 1, Dunod, Paris, 1983, 294 pp. ; v. 2, 236 pp. | MR | MR