The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 474-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a system of ordinary differential equations with pointwise phase equality constraint and a finite number of functional equality and inequality constraints. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space and, thirdly, it is resistant to errors of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the methods of dual regularization and iterative dual regularization.
Keywords: optimal control, instability, iterative dual regularization, regularized iterative Lagrange principle, regularized iterative Pontryagin's maximum principle.
@article{VUU_2016_26_4_a2,
     author = {F. A. Kuterin and M. I. Sumin},
     title = {The regularized iterative {Pontryagin} maximum principle in optimal control. {I.~Optimization} of a lumped system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {474--489},
     year = {2016},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/}
}
TY  - JOUR
AU  - F. A. Kuterin
AU  - M. I. Sumin
TI  - The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 474
EP  - 489
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/
LA  - ru
ID  - VUU_2016_26_4_a2
ER  - 
%0 Journal Article
%A F. A. Kuterin
%A M. I. Sumin
%T The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 474-489
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/
%G ru
%F VUU_2016_26_4_a2
F. A. Kuterin; M. I. Sumin. The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 474-489. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a2/

[1] Sumin M. I., “Parametric dual regularization for an optimal control problem with pointwise state constraints”, Comput. Math. Math. Phys., 49:12 (2009), 1987–2005 | DOI | MR

[2] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl

[3] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Applied Mathematics, 3 (2012), 1334–1350 | DOI

[4] Sumin M. I., “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Comput. Math. Math. Phys., 54:1 (2014), 22–44 | DOI | DOI | MR | Zbl

[5] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Comput. Math. Math. Phys., 47:4 (2007), 579–600 | DOI | MR | Zbl

[6] Sumin M. I., Ill-posed problems and their solutions. Materials for lectures for senior students, Textbook, Lobachevsky State University of Nizhni Novgorod, 2009

[7] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972, 531 pp. | MR | Zbl

[8] Sumin M. I., “Suboptimal control of distributed-parameter systems: Minimizing sequences and the value function”, Comput. Math. Math. Phys., 37:1 (1997), 21–39 | MR | Zbl

[9] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proceedings and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993, 153 pp. ; 432 с. | MR | Zbl

[10] Vasil'ev F. P., Optimization methods, v. 1, 2, Moscow Center for Continuous Mathematical Education, M., 2011, 620 pp.; 432 pp.

[11] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Nauka, M., 1979, 432 pp.

[12] Aubin J.-P., L'analyse non lineaire et ses motivations economiques, Masson, Paris–New York, 1984, 214 pp. | MR | MR

[13] Arrow K. J., Hurwicz L., Uzawa H., Studies in linear and nonlinear programming, Staford University Press, Stanford, 1958 | MR

[14] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990, 488 pp. ; Minoux M., Programation mathematique. Theorie et algorithmes, v. 1, Dunod, Paris, 1983, 294 pp. ; v. 2, 236 pp. | MR | MR