Finite spectrum assignment problem in linear systems with state delay by static output feedback
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 463-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a control system defined by a linear time-invariant system of differential equations with delay \begin{equation} \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \tag{1} \end{equation} We construct the controller for the system $(1)$ as linear output feedback $u(t)=Q_0 y(t)+Q_1 y(t-h)$. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain matrices $Q_0$, $Q_1$ such that the characteristic quasipolynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion was found for solvability of the finite spectrum assignment problem. The obtained result extends to systems with several delays. Corollaries on stabilization by linear static output feedback with delay are obtained for system $(1)$ as well as for systems of type $(1)$ with several delays.
Keywords: linear delay systems, spectrum assignment, stabilization, output feedback.
@article{VUU_2016_26_4_a1,
     author = {V. A. Zaitsev and I. G. Kim},
     title = {Finite spectrum assignment problem in linear systems with state delay by static output feedback},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {463--473},
     year = {2016},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a1/}
}
TY  - JOUR
AU  - V. A. Zaitsev
AU  - I. G. Kim
TI  - Finite spectrum assignment problem in linear systems with state delay by static output feedback
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 463
EP  - 473
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a1/
LA  - ru
ID  - VUU_2016_26_4_a1
ER  - 
%0 Journal Article
%A V. A. Zaitsev
%A I. G. Kim
%T Finite spectrum assignment problem in linear systems with state delay by static output feedback
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 463-473
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a1/
%G ru
%F VUU_2016_26_4_a1
V. A. Zaitsev; I. G. Kim. Finite spectrum assignment problem in linear systems with state delay by static output feedback. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 463-473. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a1/

[1] Krasovskii N. N., Osipov Yu. S., “On the stabilization of motions of a plant with delay in a control system”, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1963, no. 6, 3–15 (in Russian)

[2] Osipov Yu. S., “Stabilization of control systems with delays”, Differ. Uravn., 1:5 (1965), 605–618 (in Russian) | Zbl

[3] Bulatov V. I., Kalyuzhnaya T. S., Naumovich R. F., “Control over spectrum of differential equations”, Differ. Uravn., 10:11 (1974), 1946–1952 (in Russian) | Zbl

[4] Asmykovich I. K., Marchenko V. M., “Spectrum control in systems with delay”, Automation and Remote Control, 37:7 (1976), 975–984 | MR | Zbl

[5] Gabelaya A. G., Ivanenko V. I., Odarich O. N., “Stabilizability of autonomous linear systems with a delay”, Automation and Remote Control, 37:8 (1976), 1145–1150 | MR | Zbl

[6] Asmykovich I. K., Marchenko V. M., “Modal control of multiinput linear delayed systems”, Automation and Remote Control, 41:1 (1980), 1–5 | MR | Zbl

[7] Marchenko V. M., “Modal control in systems with delay”, Automation and Remote Control, 49:11 (1988), 1449–1457 | MR | Zbl

[8] Khartovskii V. E., Pavlovskaya A. T., “To the problem of modal control for linear systems of neutral type”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 4, 146–155 | DOI

[9] Manitius A. Z., Olbrot A. W., “Finite spectrum assignment problem for systems with delays”, IEEE Transactions on Automatic Control, 24:4 (1979), 541–553 | DOI | MR | Zbl

[10] Mondie S., Michiels W., “Finite spectrum assignment of unstable time-delay systems with a safe implementation”, IEEE Transactions on Automatic Control, 48:12 (2003), 2207–2212 | DOI | MR

[11] Metel'skii A. V., “Complete damping of a linear autonomous differential-difference system by a controller of the same type”, Differential Equations, 48:9 (2012), 1219–1235 | DOI | MR | Zbl

[12] Metel'skii A. V., “Finite spectrum assignment problem for a delay type system”, Differential Equations, 50:5 (2014), 689–699 | DOI | MR | Zbl

[13] Metel'skii A. V., “Finite spectrum assignment problem for a differential system of neutral type”, Differential Equations, 51:1 (2015), 69–82 | DOI | MR | Zbl

[14] Metel'skii A. V., “Feedback control of the spectrum of differential-difference system”, Automation and Remote Control, 76:4 (2015), 560–572 | DOI | MR | Zbl

[15] Metel'skii A. V., “Finite spectrum assignment and complete damping of a differential system of the neutral type by a single controller”, Differential Equations, 52:1 (2016), 92–110 | DOI | MR | Zbl

[16] Zaitsev V. A., “Spectrum control in linear systems with incomplete feedback”, Differential Equations, 45:9 (2009), 1348–1357 | DOI | MR | Zbl

[17] Zaitsev V. A., “Necessary and sufficient conditions in a spectrum control problem”, Differential Equations, 46:12 (2010), 1789–1793 | DOI | MR | Zbl

[18] Zaitsev V. A., “Consistent systems and pole assignment: I”, Differential Equations, 48:1 (2012), 120–135 | DOI | MR | Zbl