Noise-induced intermittency and transition to chaos in the neuron Rulkov model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 453-462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A discrete neuron model proposed by Rulkov is studied. In the deterministic version, this system simulates different modes of neural activity, such as quiescence, tonic and chaotic spiking. In the presence of random disturbances, another important mode of bursting characterized by the alternation of quiescence and excitement regimes can be observed. We study the probabilistic mechanisms of noise-induced transitions from quiescence to bursting in the zone of the tangent bifurcation. It is shown that such transitions are accompanied by a transformation of the system dynamics from regular to chaotic. For the analysis of these bifurcation phenomena, the stochastic sensitivity functions technique and method of confidence intervals are used.
Keywords: Rulkov model of neural activity, stochastic sensitivity function, noise-induced transitions, stochastic bifurcations.
Mots-clés : random perturbations, tangent bifurcation
@article{VUU_2016_26_4_a0,
     author = {I. A. Bashkirtseva and V. M. Nasyrova and L. B. Ryashko and I. N. Tsvetkov},
     title = {Noise-induced intermittency and transition to chaos in the neuron {Rulkov} model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {453--462},
     year = {2016},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/}
}
TY  - JOUR
AU  - I. A. Bashkirtseva
AU  - V. M. Nasyrova
AU  - L. B. Ryashko
AU  - I. N. Tsvetkov
TI  - Noise-induced intermittency and transition to chaos in the neuron Rulkov model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 453
EP  - 462
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/
LA  - ru
ID  - VUU_2016_26_4_a0
ER  - 
%0 Journal Article
%A I. A. Bashkirtseva
%A V. M. Nasyrova
%A L. B. Ryashko
%A I. N. Tsvetkov
%T Noise-induced intermittency and transition to chaos in the neuron Rulkov model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 453-462
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/
%G ru
%F VUU_2016_26_4_a0
I. A. Bashkirtseva; V. M. Nasyrova; L. B. Ryashko; I. N. Tsvetkov. Noise-induced intermittency and transition to chaos in the neuron Rulkov model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 453-462. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/

[1] Izhikevich E. M., Dynamical systems in neuroscience: the geometry of excitability and bursting, MIT Press, Cambridge, 2007, 497 pp. | MR

[2] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer, New York, 2004, 632 pp. | DOI | MR | Zbl

[3] Ibarz B., Casado J. M., Sanjuan M. A. F., “Map-based models in neuronal dynamics”, Physics Reports, 501:1–2 (2011), 1–74 | DOI

[4] Girardi-Schappo M., Tragtenberg M. H. R., Kinouchi O., “A brief history of excitable map-based neurons and neural networks”, Journal of Neuroscience Methods, 220:2 (2013), 116–130 | DOI

[5] Rulkov N. F., “Regularization of synchronized chaotic bursts”, Physical Review Letters, 86:1 (2001), 183–186 | DOI

[6] Pomeau Y., Manneville P., “Intermittent transition to turbulence in dissipative dynamical systems”, Communications in Mathematical Physics, 74:2 (1980), 189–197 | DOI | MR

[7] Manneville P., Pomeau Y., “Different ways to turbulence in dissipative dynamical systems”, Physica D: Nonlinear Phenomena, 1:2 (1980), 219–226 | DOI | MR

[8] Neimark Yu. I., Landa P. S., Stochastic and chaotic oscillations, Nauka, M., 1987, 424 pp.

[9] Crutchfield J. P., Farmer J. D., Huberman B. A., “Fluctuations and simple chaotic dynamics”, Physics Reports, 92:2 (1982), 45–82 | DOI | MR

[10] Lasota A., Mackey M. C., Chaos, fractals, and noise: stochastic aspects of dynamics, Springer-Verlag, New York, 1994, 474 pp. | DOI | MR | Zbl

[11] Bashkirtseva I., Ryashko L., Tsvetkov I., “Stochastic sensitivity of equilibrium and cycles for 1d discrete maps”, Izvestiya Vysshikh Uchebnykh Zavedenii. Prikladnaya Nelineinaya Dinamika, 17:6 (2009), 74–85 (in Russian)

[12] Bashkirtseva I., Ryashko L., Tsvetkov I., “Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems”, Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 17 (2010), 501–515 | MR | Zbl

[13] Grebogi C., Ott E., Yorke J. A., “Crises, sudden changes in chaotic attractors and transient chaos”, Physica D: Nonlinear Phenomena, 7:1–3 (1983), 181–200 | DOI | MR

[14] Arnold V. I., Afrajmovich V. S., Il'yashenko Yu. S., Shil'nikov L. P., Dynamical systems, v. V, Bifurcation theory and catastrophe theory, Springer, Berlin–Heidelberg, 1994 | DOI | MR

[15] Bashkirtseva I., Ryashko L., “Stochastic sensitivity of the closed invariant curves for discrete-time systems”, Physica A: Statistical Mechanics and its Application, 410 (2014), 236–243 | DOI | MR

[16] Bashkirtseva I., Ryashko L., “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514 | DOI | Zbl

[17] Bashkirtseva I., Ryashko L., Slepukhina E., “Noise-induced oscillation bistability and transition to chaos in FitzHugh–Nagumo model”, Fluctuation and Noise Letters, 13:01 (2014), 1450004, 16 pp. | DOI

[18] Ryashko L. B., Sysolyatina A. A., “Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor's model”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:1 (2015), 60–70 | DOI | Zbl