Mots-clés : random perturbations, tangent bifurcation
@article{VUU_2016_26_4_a0,
author = {I. A. Bashkirtseva and V. M. Nasyrova and L. B. Ryashko and I. N. Tsvetkov},
title = {Noise-induced intermittency and transition to chaos in the neuron {Rulkov} model},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {453--462},
year = {2016},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/}
}
TY - JOUR AU - I. A. Bashkirtseva AU - V. M. Nasyrova AU - L. B. Ryashko AU - I. N. Tsvetkov TI - Noise-induced intermittency and transition to chaos in the neuron Rulkov model JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 453 EP - 462 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/ LA - ru ID - VUU_2016_26_4_a0 ER -
%0 Journal Article %A I. A. Bashkirtseva %A V. M. Nasyrova %A L. B. Ryashko %A I. N. Tsvetkov %T Noise-induced intermittency and transition to chaos in the neuron Rulkov model %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 453-462 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/ %G ru %F VUU_2016_26_4_a0
I. A. Bashkirtseva; V. M. Nasyrova; L. B. Ryashko; I. N. Tsvetkov. Noise-induced intermittency and transition to chaos in the neuron Rulkov model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 4, pp. 453-462. http://geodesic.mathdoc.fr/item/VUU_2016_26_4_a0/
[1] Izhikevich E. M., Dynamical systems in neuroscience: the geometry of excitability and bursting, MIT Press, Cambridge, 2007, 497 pp. | MR
[2] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer, New York, 2004, 632 pp. | DOI | MR | Zbl
[3] Ibarz B., Casado J. M., Sanjuan M. A. F., “Map-based models in neuronal dynamics”, Physics Reports, 501:1–2 (2011), 1–74 | DOI
[4] Girardi-Schappo M., Tragtenberg M. H. R., Kinouchi O., “A brief history of excitable map-based neurons and neural networks”, Journal of Neuroscience Methods, 220:2 (2013), 116–130 | DOI
[5] Rulkov N. F., “Regularization of synchronized chaotic bursts”, Physical Review Letters, 86:1 (2001), 183–186 | DOI
[6] Pomeau Y., Manneville P., “Intermittent transition to turbulence in dissipative dynamical systems”, Communications in Mathematical Physics, 74:2 (1980), 189–197 | DOI | MR
[7] Manneville P., Pomeau Y., “Different ways to turbulence in dissipative dynamical systems”, Physica D: Nonlinear Phenomena, 1:2 (1980), 219–226 | DOI | MR
[8] Neimark Yu. I., Landa P. S., Stochastic and chaotic oscillations, Nauka, M., 1987, 424 pp.
[9] Crutchfield J. P., Farmer J. D., Huberman B. A., “Fluctuations and simple chaotic dynamics”, Physics Reports, 92:2 (1982), 45–82 | DOI | MR
[10] Lasota A., Mackey M. C., Chaos, fractals, and noise: stochastic aspects of dynamics, Springer-Verlag, New York, 1994, 474 pp. | DOI | MR | Zbl
[11] Bashkirtseva I., Ryashko L., Tsvetkov I., “Stochastic sensitivity of equilibrium and cycles for 1d discrete maps”, Izvestiya Vysshikh Uchebnykh Zavedenii. Prikladnaya Nelineinaya Dinamika, 17:6 (2009), 74–85 (in Russian)
[12] Bashkirtseva I., Ryashko L., Tsvetkov I., “Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems”, Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 17 (2010), 501–515 | MR | Zbl
[13] Grebogi C., Ott E., Yorke J. A., “Crises, sudden changes in chaotic attractors and transient chaos”, Physica D: Nonlinear Phenomena, 7:1–3 (1983), 181–200 | DOI | MR
[14] Arnold V. I., Afrajmovich V. S., Il'yashenko Yu. S., Shil'nikov L. P., Dynamical systems, v. V, Bifurcation theory and catastrophe theory, Springer, Berlin–Heidelberg, 1994 | DOI | MR
[15] Bashkirtseva I., Ryashko L., “Stochastic sensitivity of the closed invariant curves for discrete-time systems”, Physica A: Statistical Mechanics and its Application, 410 (2014), 236–243 | DOI | MR
[16] Bashkirtseva I., Ryashko L., “Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect”, Chaos, 21:4 (2011), 047514 | DOI | Zbl
[17] Bashkirtseva I., Ryashko L., Slepukhina E., “Noise-induced oscillation bistability and transition to chaos in FitzHugh–Nagumo model”, Fluctuation and Noise Letters, 13:01 (2014), 1450004, 16 pp. | DOI
[18] Ryashko L. B., Sysolyatina A. A., “Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor's model”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:1 (2015), 60–70 | DOI | Zbl