Formation of the microstructure of rapidly solidified alloys for the system $\mathrm{Sn}$$\mathrm{Bi}$
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 388-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of microstructural study of rapidly solidified $\mathrm{Sn}$$\mathrm{Bi}$ alloys obtained at the melt cooling rate of $10^5$ K/s with the compositions of $\mathrm{Sn}$$\mathrm X$ wt. % $\mathrm{Bi}$ ($\mathrm X=13,20,30,43$) are presented. Microstructural studies are carried out using scanning electron microscopy; a grain structure is analyzed by an electron backscatter diffraction technique. It is found out that the crystallization of all investigated alloys proceeds by a chemically partionless mechanism which results in the formation of a supersaturated solid solution of bismuth in a tin lattice with the original composition. Observations of the solid solution decomposition process at room temperature shows that decomposition proceeds by both continuous and discontinuous mechanisms in alloys with bismuth concentration not higher than the limit of solubility of bismuth in a tin ($20$ wt. %). Needle-like coherent bismuth inclusions are formed in the volume of a tin grain as a result of continuous decomposition. Discontinuous decomposition rate increases with the increasing concentration of bismuth in the alloy. In hipoeutectic alloys with bismuth concentration higher than the solubility limit, decomposition occurs by discontinuous mechanism. Complete decomposition proceeds by several stages and results in formation of areas with different degrees of microstructure fineness.
Keywords: rapid quenching from the melt, chemically partionless crystallization, continuous decomposition, discontinuous decomposition, tin, bismuth.
Mots-clés : solid solution
@article{VUU_2016_26_3_a7,
     author = {O. V. Gusakova and P. K. Galenko and V. G. Shepelevich and D. V. Alexandrov},
     title = {Formation of the microstructure of rapidly solidified alloys for the system~$\mathrm{Sn}${\textendash}$\mathrm{Bi}$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {388--400},
     year = {2016},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a7/}
}
TY  - JOUR
AU  - O. V. Gusakova
AU  - P. K. Galenko
AU  - V. G. Shepelevich
AU  - D. V. Alexandrov
TI  - Formation of the microstructure of rapidly solidified alloys for the system $\mathrm{Sn}$–$\mathrm{Bi}$
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 388
EP  - 400
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a7/
LA  - ru
ID  - VUU_2016_26_3_a7
ER  - 
%0 Journal Article
%A O. V. Gusakova
%A P. K. Galenko
%A V. G. Shepelevich
%A D. V. Alexandrov
%T Formation of the microstructure of rapidly solidified alloys for the system $\mathrm{Sn}$–$\mathrm{Bi}$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 388-400
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a7/
%G ru
%F VUU_2016_26_3_a7
O. V. Gusakova; P. K. Galenko; V. G. Shepelevich; D. V. Alexandrov. Formation of the microstructure of rapidly solidified alloys for the system $\mathrm{Sn}$–$\mathrm{Bi}$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 388-400. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a7/

[1] Gusakova O., Shepelevich V., Scherbachenko L., “Effect of melt cooling rate on microstructure of Sn–Bi and Sn–Pb eutectic alloys”, Advanced Materials Research, 856 (2014), 236–240 | DOI

[2] Gusakova O. V., Shepelevich V. G., “Structure and properties of rapidly solidified foils of alloys of Sn–Zn–Bi system”, Inorganic Materials: Applied Research, 1:4 (2010), 344–349 | DOI

[3] Li B., Brody H. D., Kazimirov A., “Real time observation of dendrite coarsening in Sn–13 % Bi alloy by synchrotron microradiography”, Physical Review E, 70:6 (2004), 062602, 4 pp. | DOI

[4] Yoshioka H., Tada Y., Hayashi Y., “Crystal growth and its morphology in the mushy zone”, Acta Materialia, 52:6 (2004), 1515–1523 | DOI

[5] Zhai Q. J., Gao Y. L., Guan W. B., Xu K. D., “Role of size and cooling rate in quenched droplet of Sn–Bi eutectic alloy”, Materials Science and Engineering: A, 441:1–2 (2006), 278–281 | DOI

[6] Kurz W., Fisher D. J., “Dendrite growth at the limit of stability: tip radius and spacing”, Acta Metallurgica, 29:1 (1981), 11–20 | DOI

[7] Herlach D. M., Galenko P., Holland-Moritz D., Metastable solids from undercooled melt, Elsevier, Amsterdam, 2007, 432 pp.

[8] Miroshnichenko I. S., Quenching from the liquid state, Metallurgiya, Moscow, 1982, 168 pp.

[9] Shepelevich V. G., Rapidly solidified fusible alloys, Belarusian State University, Minsk, 2015, 192 pp.

[10] Kamal M., El-Bediwi A.-B., El-Ashram T., “The effect of rapid solidification on the structure, decomposition behavior, electrical and mechanical properties of the Sn–Cd binary alloys”, Journal of Materials Science: Materials in Electronics, 15:4 (2004), 211–217 | DOI

[11] Gusakova O. V., Shepelevich V. G., “Decomposition of a supersaturated solid solution in thin foils of Sn–Bi alloys”, The Physics of Metals and Metallography, 108:3 (2009), 292–297 | DOI

[12] Galenko P. K., Herlach D. M., “Diffusionless crystal growth in rapidly solidifying eutectic systems”, Physical Review Letters, 96:15 (2006), 150602, 4 pp. | DOI

[13] Galenko P., “Solute trapping and diffusionless solidification in a binary system”, Physical Review E, 76:3 (2007), 031606, 9 pp. | DOI

[14] Galenko P. K., Abramova E. V., Jou D., Danilov D. A., Lebedev V. G., Herlach D. M., “Solute trapping in rapid solidification of a binary dilute system: A phase-field study”, Physical Review E, 84:4 (2011), 041143, 17 pp. | DOI

[15] Larikov L. N., Shmatko O. A., Cellular decomposition of supersaturated solid solutions, Naukova dumka, Kiev, 1976, 179 pp.

[16] Novikov I. I., Theory of thermal treatment of metals, Metallurgiya, Moscow, 1986, 480 pp.

[17] Engler O., Randle V., Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, CRC Press, 2010, 417 pp.

[18] Lyakishev N. P. (Ed.), The state diagrams of binary metallic systems, Handbook in 3 volumes, Mashinostroenie, Moscow, 1996, 992 pp.

[19] Gusakova O. V., Shepelevich V. G., “Decomposition of supersaturated solid solution in alloy Sn–8 at. % Bi obtained by rapid solidification from the melt technique”, Abstracts of XXII Russian Conference on Electron Microscopy (SEM-2008), Institute of Microelectronics Technology and High Purity Materials RAS, Institute of Crystallography RAS, Chernogolovka, 2008, 164 (in Russian)

[20] Zemtsova N. D., Starchenko E. I., “Possibility of development of cellular decomposition under conditions of low-angled boundary migration”, Fizika metallov i metallovedenie, 50:3 (1980), 655–659 (in Russian)