Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 379-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of inclined viscous flow around a dendrite in Oseen's hydrodynamic approximation is formulated. The analytical solution of the problem on inclined viscous flow around a parabolic dendrite in two- and three-dimensional cases is constructed. The components of fluid velocity in the vicinity of the dendritic tip in 2D and 3D flow geometries are determined in the laboratory coordinate system by means of the curvilinear coordinates of parabolic cylinder and paraboloid of revolution. The analytical solutions of Oseen's hydrodynamic equations are rewritten in the coordinate system connected to the dendrite growing with a constant velocity. The obtained solution transforms to the previously known one in the limiting case of zero angle between the fluid velocity direction far from the dendrite and its axis. A scaled component of fluid velocity as a function of parabolic coordinates at different slope coefficients of flow is illustrated.
Mots-clés : dendrites, convection
Keywords: viscous flow, Oseen's approximation.
@article{VUU_2016_26_3_a6,
     author = {D. V. Alexandrov and P. K. Galenko},
     title = {Analytical solution of the problem on inclined viscous flow around a~parabolic dendrite within the framework of {Oseen's} approximation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {379--387},
     year = {2016},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/}
}
TY  - JOUR
AU  - D. V. Alexandrov
AU  - P. K. Galenko
TI  - Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 379
EP  - 387
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/
LA  - ru
ID  - VUU_2016_26_3_a6
ER  - 
%0 Journal Article
%A D. V. Alexandrov
%A P. K. Galenko
%T Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 379-387
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/
%G ru
%F VUU_2016_26_3_a6
D. V. Alexandrov; P. K. Galenko. Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/

[1] Bouissou P., Perrin B., Tabeling P., “Influence of an external flow on dendritic crystal growth”, Physical Review A, 40:1 (1989), 509–510 | DOI

[2] Binder S., Galenko P. K., Herlach D. M., “The effect of fluid flow on the solidification of $\mathrm{Ni_2B}$ from the undercooled melt”, Journal of Applied Physics, 115:5 (2014), 053511 | DOI

[3] Gao J., Han M., Kao A., Pericleous K., Alexandrov D. V., Galenko P. K., “Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection”, Acta Materialia, 103 (2016), 184–191 | DOI

[4] Oseen C. W., “Über die Stokessche formel und über eine verwandte aufgabe in der hydrodynamik”, Ark. Mat. Astron. Fys., 6 (1910), 1–20

[5] Dash S. K., Gill W. N., “Forced convection heat and momentum transfer to dendritic structures (parabolic cylinders and paraboloids of revolution)”, International Journal of Heat and Mass Transfer, 27:8 (1984), 1345–1356 | DOI | Zbl

[6] Lamb H. (Sir), Hydrodynamics, Cambridge University Press, Cambridge, 1895, 636 pp. | MR | Zbl

[7] Kochin N. E., Kibel' I. A., Roze N. V., Theoretical hydromechanics, Interscience, New York, 1964, 577 pp. | MR | Zbl

[8] Buyevich Yu. A., Alexandrov D. V., Zakharov S. V., Hydrodynamics, Examples and problems, Begell House, New York, 2001, 331 pp.

[9] Bouissou Ph., Pelcé P., “Effect of a forced flow on dendritic growth”, Physical Review A, 40:11 (1989), 6673–6680 | DOI

[10] Alexandrov D. V., Galenko P. K., “Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection”, Physical Review E, 87:6 (2013), 062403, 5 pp. | DOI

[11] Alexandrov D. V., Galenko P. K., “Dendrite growth under forced convection: analysis methods and experimental tests”, Physics-Uspekhi, 57:8 (2014), 771–786 | DOI | DOI

[12] Alexandrov D. V., Galenko P. K., “Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow”, Physical Chemistry Chemical Physics, 17 (2015), 19149–19161 | DOI

[13] Kao A., Pericleous K., “A numerical model coupling thermoelectricity, magnetohydrodynamics and dendritic growth”, Journal of Algorithms Computational Technology, 6:1 (2012), 173–201 | DOI | MR | Zbl

[14] Kao A., Shevchenko N., Roshchupinka O., Eckert S., Pericleous K., “The effects of natural, forced and thermoelectric magnetohydrodynamic convection during the solidification of thin sample alloys”, IOP Conference Series: Materials Science and Engineering, 84 (2015), 012018, 8 pp. | DOI