Keywords: viscous flow, Oseen's approximation.
@article{VUU_2016_26_3_a6,
author = {D. V. Alexandrov and P. K. Galenko},
title = {Analytical solution of the problem on inclined viscous flow around a~parabolic dendrite within the framework of {Oseen's} approximation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {379--387},
year = {2016},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/}
}
TY - JOUR AU - D. V. Alexandrov AU - P. K. Galenko TI - Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 379 EP - 387 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/ LA - ru ID - VUU_2016_26_3_a6 ER -
%0 Journal Article %A D. V. Alexandrov %A P. K. Galenko %T Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 379-387 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/ %G ru %F VUU_2016_26_3_a6
D. V. Alexandrov; P. K. Galenko. Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a6/
[1] Bouissou P., Perrin B., Tabeling P., “Influence of an external flow on dendritic crystal growth”, Physical Review A, 40:1 (1989), 509–510 | DOI
[2] Binder S., Galenko P. K., Herlach D. M., “The effect of fluid flow on the solidification of $\mathrm{Ni_2B}$ from the undercooled melt”, Journal of Applied Physics, 115:5 (2014), 053511 | DOI
[3] Gao J., Han M., Kao A., Pericleous K., Alexandrov D. V., Galenko P. K., “Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection”, Acta Materialia, 103 (2016), 184–191 | DOI
[4] Oseen C. W., “Über die Stokessche formel und über eine verwandte aufgabe in der hydrodynamik”, Ark. Mat. Astron. Fys., 6 (1910), 1–20
[5] Dash S. K., Gill W. N., “Forced convection heat and momentum transfer to dendritic structures (parabolic cylinders and paraboloids of revolution)”, International Journal of Heat and Mass Transfer, 27:8 (1984), 1345–1356 | DOI | Zbl
[6] Lamb H. (Sir), Hydrodynamics, Cambridge University Press, Cambridge, 1895, 636 pp. | MR | Zbl
[7] Kochin N. E., Kibel' I. A., Roze N. V., Theoretical hydromechanics, Interscience, New York, 1964, 577 pp. | MR | Zbl
[8] Buyevich Yu. A., Alexandrov D. V., Zakharov S. V., Hydrodynamics, Examples and problems, Begell House, New York, 2001, 331 pp.
[9] Bouissou Ph., Pelcé P., “Effect of a forced flow on dendritic growth”, Physical Review A, 40:11 (1989), 6673–6680 | DOI
[10] Alexandrov D. V., Galenko P. K., “Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection”, Physical Review E, 87:6 (2013), 062403, 5 pp. | DOI
[11] Alexandrov D. V., Galenko P. K., “Dendrite growth under forced convection: analysis methods and experimental tests”, Physics-Uspekhi, 57:8 (2014), 771–786 | DOI | DOI
[12] Alexandrov D. V., Galenko P. K., “Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow”, Physical Chemistry Chemical Physics, 17 (2015), 19149–19161 | DOI
[13] Kao A., Pericleous K., “A numerical model coupling thermoelectricity, magnetohydrodynamics and dendritic growth”, Journal of Algorithms Computational Technology, 6:1 (2012), 173–201 | DOI | MR | Zbl
[14] Kao A., Shevchenko N., Roshchupinka O., Eckert S., Pericleous K., “The effects of natural, forced and thermoelectric magnetohydrodynamic convection during the solidification of thin sample alloys”, IOP Conference Series: Materials Science and Engineering, 84 (2015), 012018, 8 pp. | DOI