On the Riemann–Stieltjes double integral
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 366-378
Cet article a éte moissonné depuis la source Math-Net.Ru
The article deals with the new properties of the Riemann–Stieltjes curvilinear integral. It is proved that the Riemann–Stieltjes curvilinear integral is independent of path of integration if an integrable and an integrating functions depend only on one variable. A new necessary condition of the functional dependence of functions of two variables is found. The author proposes a new approach to the definition of the Riemann–Stieltjes double integral, which contains not one but two integrating functions. General properties of the Riemann–Stieltjes double integral are discussed. Methods for calculating the double integral for the case of smooth or piecewise-smooth integrating functions are presented. A formula for the conversion of the Riemann–Stieltjes double integral into an iterated integral is obtained.
Keywords:
curvilinear integral, double integral, Riemann–Stieltjes integral.
@article{VUU_2016_26_3_a5,
author = {D. L. Fedorov},
title = {On the {Riemann{\textendash}Stieltjes} double integral},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {366--378},
year = {2016},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a5/}
}
D. L. Fedorov. On the Riemann–Stieltjes double integral. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 366-378. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a5/
[1] Schwabik S., Tvrdy M., Vejvoda O., Differential and integral equations, Boundary value problems and adjoints, Academia, Prague, 1979, 249 pp. | MR | Zbl
[2] Derr V. Ya., Theory of functions of a real variable, Lectures and exercises, Vysshaya shkola, Moscow, 2008, 384 pp.
[3] Natanson I. P., Theory of functions of a real variable, Nauka, Moscow, 1974, 480 pp. | MR
[4] Riesz F., Szökefalvi-Nagy B., Lectures on functional analysis, Mir, Moscow, 1979, 589 pp. | MR
[5] Tolstov G. P., The measure and the integral, Nauka, Moscow, 1976, 392 pp. | MR
[6] Fedorov D. L., “On the line contour Riemann–Stiltjes integral”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 3, 117–126 (in Russian) | DOI | Zbl