Some representations of free ultrafilters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 345-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constructions related to the representation of free $\sigma$-multiplicative ultrafilters of widely interpreted measurable spaces are considered. These constructions are based on the representations connected with the application of open ultrafilters for co-finite and co-countable topologies. Such ultrafilters are preserved (as maximal filters) under the replacement of topologies by algebra and $\sigma$-algebra generated by above-mentioned topologies, respectively. In (general) case of co-countable topology, uniqueness of $\sigma$-multiplicative free ultrafilter composed of nonempty open sets is established. It is demonstrated that the given property is preserved for $\sigma$-algebras containing co-countable topology. Two topologies of the space of bounded finitely additive Borel measures with the property of uniqueness of remainder for sequentially closed set of Dirac measures under the closure construction are stated.
Keywords: algebra of sets, measure, topology, ultrafilter.
@article{VUU_2016_26_3_a4,
     author = {E. G. Pytkeev and A. G. Chentsov},
     title = {Some representations of free ultrafilters},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {345--365},
     year = {2016},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a4/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - A. G. Chentsov
TI  - Some representations of free ultrafilters
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 345
EP  - 365
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a4/
LA  - ru
ID  - VUU_2016_26_3_a4
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A A. G. Chentsov
%T Some representations of free ultrafilters
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 345-365
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a4/
%G ru
%F VUU_2016_26_3_a4
E. G. Pytkeev; A. G. Chentsov. Some representations of free ultrafilters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 345-365. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a4/

[1] Engelking R., General topology, Mir, Moscow, 1986, 751 pp. | MR

[2] Chentsov A. G., “On measurable spaces admitting non-Dirac countably additive $(0,1)$-measure”, Doklady Mathematics, 65:3 (2002), 425–428 | MR | Zbl

[3] Chentsov A. G., “Structure of countably additive non-Dirac $(0,1)$-measures”, Mathematical and applied analysis: Transactions, 1, Tyumen State University, Tyumen, 2003, 218–243 (in Russian)

[4] Chentsov A. G., Elements of a finitely additive measure theory, v. II, USTU–UPI, Yekaterinburg, 2010, 542 pp.

[5] Iliadis S., Fomin S., “The method of centred systems in the theory of topological spaces”, Russian Mathematical Surveys, 21:4 (1966), 37–62 | DOI | MR | Zbl

[6] Bulinskii A. V., Shiryaev A. N., Theory of stochastic processes, Fizmatlit, Moscow, 2005, 402 pp.

[7] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 408 pp. | DOI | MR | Zbl

[8] Chentsov A. G., Pytkeev E. G., “Some topological structures of extensions of abstract reachability problems”, Proceedings of the Steklov Institute of Mathematics, 292, suppl. 1 (2016), 36–54 | DOI | MR | MR

[9] Pytkeev E. G., Chentsov A. G., “Some properties of open ultrafilters”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2015, no. 2(46), 140–148 (in Russian) | Zbl

[10] Burbaki N., General topology, Nauka, Moscow, 1968, 272 pp. | MR

[11] Aleksandryan R. A., Mirzakhanyan E. A., General topology, Vysshaya shkola, Moscow, 1979, 336 pp.

[12] Chentsov A. G., “To question about realization of attraction elements in abstract attainability problems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:2 (2015), 212–229 (in Russian) | DOI | Zbl

[13] Chentsov A. G., Elements of a finitely additive measure theory, v. I, USTU–UPI, Yekaterinburg, 2009, 389 pp.

[14] Chentsov A. G., “To question about representation of Stone compactums”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 156–174 (in Russian) | DOI | Zbl