Determination of the texture of polycrystalline materials using an algorithm of object-vector representation of reflection planes and visualization of the results in Rodrigues space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 336-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with the method of search and analysis of textural components using direct polar figures with due account for the symmetry of a cubic crystal and a sample. The algorithm is based on the representation of reflection planes by a polar complex of vectors. Search of orientation is made by moving the axis of a polar complex over the unit hemisphere followed by the rotation of a polar complex relative to this axis. Then the position of stereographic projections of the polar complex vectors on a discrete direct pole figure is determined. Orientation is found when the projections of at least three polar complex vectors are located in the area with non-zero intensity. For each orientation a Rodrigues vector is calculated. In addition, Euler angles and Miller indices are determined. Textural components are allocated interactively by clustering the data in Rodrigues space. Using the covariance matrix the eigenvalues and eigenvectors are determined characterizing the spatial dispersion of textural components. Pole figures of an aluminum foil after various textural transformations are investigated in the article. Obtained textural components are displayed in Rodrigues space.
Keywords: texture, textural components
Mots-clés : direct pole figure, crystal orientation, Rodrigues space, textural transformations.
@article{VUU_2016_26_3_a3,
     author = {S. M. Mokrova and R. P. Petrov and V. N. Milich},
     title = {Determination of the texture of polycrystalline materials using an algorithm of object-vector representation of reflection planes and visualization of the results in {Rodrigues} space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {336--344},
     year = {2016},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a3/}
}
TY  - JOUR
AU  - S. M. Mokrova
AU  - R. P. Petrov
AU  - V. N. Milich
TI  - Determination of the texture of polycrystalline materials using an algorithm of object-vector representation of reflection planes and visualization of the results in Rodrigues space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 336
EP  - 344
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a3/
LA  - ru
ID  - VUU_2016_26_3_a3
ER  - 
%0 Journal Article
%A S. M. Mokrova
%A R. P. Petrov
%A V. N. Milich
%T Determination of the texture of polycrystalline materials using an algorithm of object-vector representation of reflection planes and visualization of the results in Rodrigues space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 336-344
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a3/
%G ru
%F VUU_2016_26_3_a3
S. M. Mokrova; R. P. Petrov; V. N. Milich. Determination of the texture of polycrystalline materials using an algorithm of object-vector representation of reflection planes and visualization of the results in Rodrigues space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 336-344. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a3/

[1] Titorov D. B., Volkov V. A., Lebedev V. P., Mineev F. V., Titorova D. V., “Texture transformations upon annealing of aluminum foils: I. Strong texture components”, The Physics of Metals and Metallography, 102:1 (2006), 83–89

[2] Umanskii Ya. S., Skakov Yu. A., Ivanov A. N., Rastorguev L. N., Crystallography, X-ray and electron microscopy, Metallurgiya, Moscow, 1982, 632 pp.

[3] Neumann P., Heinz A., “Representation of orientation and disorientation data for cubic, hexagonal, tetragonal and orthorhombic crystals”, Acta Crystallographica Section A, 47, Part 6 (1991), 780–789 | DOI | MR | Zbl

[4] Frank F. C., “Orientation mapping”, Metallurgical Transactions A, 19:3 (1988), 403–408 | DOI

[5] Korn G., Korn T., Mathematical handbook for scientists and engineers, Nauka, Moscow, 1978, 832 pp. | MR

[6] Mokrova S. M., Petrov R. P., Milich V. N., Titorov D. B., “Analysis of the texture components of metal using the direct pole figures on the basis of the object-vector representation of the reflection planes”, Zavodskaya Laboratoriya. Diagnostika Materialov, 80:5 (2014), 30–34 (in Russian)

[7] Tou J. T., Gonzalez R. C., Pattern recognition principles, Addison-Wesley, MA, 1974, 377 pp. | MR | MR | Zbl

[8] Lur'e A. I., Analytical mechanics, Gos. Izd. Fiz.-Mat. Lit., Moscow, 1961, 824 pp. | MR