Keywords: polynomial random sequence, number of runs, Chen–Stein method.
@article{VUU_2016_26_3_a2,
author = {N. M. Mezhennaya},
title = {On the limit distribution of a~number of runs in polynomial sequence controlled by {Markov} chain},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {324--335},
year = {2016},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a2/}
}
TY - JOUR AU - N. M. Mezhennaya TI - On the limit distribution of a number of runs in polynomial sequence controlled by Markov chain JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 324 EP - 335 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a2/ LA - ru ID - VUU_2016_26_3_a2 ER -
%0 Journal Article %A N. M. Mezhennaya %T On the limit distribution of a number of runs in polynomial sequence controlled by Markov chain %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 324-335 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a2/ %G ru %F VUU_2016_26_3_a2
N. M. Mezhennaya. On the limit distribution of a number of runs in polynomial sequence controlled by Markov chain. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 324-335. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a2/
[1] Balakrishnan N., Koutras M. V., Runs and scans with applications, John Wiley Sons, Inc., 2002, 452 pp. | MR
[2] Aki S., Hirano K., “Sooner and later waiting time problems for runs in Markov dependent bivariate trials”, Annals of the Institute of Statistical Mathematics, 51:1 (1999), 17–29 | DOI | MR | Zbl
[3] Aki S., Hirano K., “Discrete distributions related to succession events in two-state Markov chain”, Statistical science and data analysis, eds. Matusita K., Puri M. L., Hayakawa T., VSP International Science Publishers, Zeist, 1993, 467–474 | MR | Zbl
[4] Geske M. X., Godbole A. P., Schaffner A. A., Skolnick A. M., Wallstrom G. L., “Compound Poisson approximations for word patterns under Markovian hypotheses”, Journal of Applied Probability, 32:4 (1995), 877–892 | DOI | MR | Zbl
[5] Mikhailov V. G., “On asymptotic properties of the number of runs of events”, Tr. Diskr. Mat., 9, 2006, 152–163 (in Russian)
[6] Savelyev L. Ya., Balakin S. V., “The joint distribution of the number of ones and the number of 1-runs in binary Markov sequences”, Discrete Mathematics and Applications, 14:4 (2004), 353–372 | DOI | DOI | MR | Zbl
[7] Savelyev L. Ya., Balakin S. V., “A combinatorial approach to calculation of moments of characteristics of runs in ternary Markov sequences”, Discrete Mathematics and Applications, 21:1 (2011), 47–67 | DOI | DOI | MR | Zbl
[8] Fu J. C., Johnson B. C., “Approximate probabilities for runs and patterns in i.i.d. and Markov-dependent multistate trials”, Advances in Applied Probability, 41:1 (2009), 292–308 | DOI | MR | Zbl
[9] Mahmoudzadeh E., Montazeri M. A., Zekri M., Sadri S., “Extended hidden Markov model for optimized segmentation of breast thermography images”, Infrared Physics and Technology, 72 (2015), 19–28 | DOI
[10] Yang W., Tao J., Ye Z., “Continuous sign language recognition using level building based on fast hidden Markov model”, Pattern Recognition Letters, 78 (2016), 28–35 | DOI
[11] Koski T., Hidden Markov models for bioinformatics, Series: Computational biology, 2, Kluwer Academic Publishers, Dordrecht, 2001, 391 pp. | MR | Zbl
[12] Mamon R. S., Elliott R. J. (Eds.), Hidden Markov models in finance, International series in operations research management science, Springer-Verlag, New York, 2007, 186 pp. | DOI | MR | Zbl
[13] Elliott R. J., Aggoun L., Moore J. B., Hidden Markov models, Applications of Mathematics, 29, Springer-Verlag, New York, 1995, 382 pp. | MR | Zbl
[14] Mezhennaya N. M., “On the number of characters matchings in discrete random sequence controlled by Markov chain”, Siberian Electronic Mathematical Reports, 13 (2016), 305–317 (in Russian) | DOI | MR | Zbl
[15] Shiryaev A. N., Probability-1, 4-th edition, Moscow Center for Continuous Mathematical Education, Moscow, 2011, 552 pp.
[16] Rozanov Yu. A., Stochastic processes, Short course, Nauka, Moscow, 1979, 184 pp. | MR
[17] Arratia R., Goldstein L., Gordon L., “Two moments suffice for Poisson approximations: the Chen–Stein method”, Annals of Probability, 17:1 (1989), 9–25 | DOI | MR | Zbl
[18] Karlis D., Xekalaki E., “Mixed Poisson distributions”, International Statistical Review, 73:1 (2005), 35–58 | DOI | MR | Zbl
[19] Barbour A. D., Holst L., Janson S., Poisson approximation, Oxford University Press, Oxford, 1992, 277 pp. | MR | Zbl