The effectiveness of parallelizing an algorithm of the PFC equation solution using PetIGA library
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 445-450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents an algorithm for solving the equation of Phase Field Crystal (PFC) in a hyperbolic statement that allows to describe the phase transitions of metastable or unstable state at the nuclear density scale, described by a differential equation of the sixth order with respect to the space variable and the second order with respect to the time variable. The algorithm is based on the method of isogeometric analysis (IGA) and is implemented by PetIGA library. The resulting code allows parallel computations, which significantly speeds up the process of solving a problem. The effectiveness of used instruments during the calculations on high-performance computing clusters is evaluated. An analysis of the effectiveness of the current algorithm is carried out for heterogeneous computer systems.
Keywords: phase field crystal, high performance computation, isogeometric analysis.
@article{VUU_2016_26_3_a11,
     author = {I. O. Starodumov and E. V. Pavlyuk and S. M. Abramov and L. V. Klyuev and P. K. Galenko and D. V. Alexandrov},
     title = {The effectiveness of parallelizing an algorithm of the {PFC} equation solution using {PetIGA} library},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {445--450},
     year = {2016},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a11/}
}
TY  - JOUR
AU  - I. O. Starodumov
AU  - E. V. Pavlyuk
AU  - S. M. Abramov
AU  - L. V. Klyuev
AU  - P. K. Galenko
AU  - D. V. Alexandrov
TI  - The effectiveness of parallelizing an algorithm of the PFC equation solution using PetIGA library
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 445
EP  - 450
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a11/
LA  - ru
ID  - VUU_2016_26_3_a11
ER  - 
%0 Journal Article
%A I. O. Starodumov
%A E. V. Pavlyuk
%A S. M. Abramov
%A L. V. Klyuev
%A P. K. Galenko
%A D. V. Alexandrov
%T The effectiveness of parallelizing an algorithm of the PFC equation solution using PetIGA library
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 445-450
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a11/
%G ru
%F VUU_2016_26_3_a11
I. O. Starodumov; E. V. Pavlyuk; S. M. Abramov; L. V. Klyuev; P. K. Galenko; D. V. Alexandrov. The effectiveness of parallelizing an algorithm of the PFC equation solution using PetIGA library. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 3, pp. 445-450. http://geodesic.mathdoc.fr/item/VUU_2016_26_3_a11/

[1] Starodumov I., Pavlyuk E., Klyuev L., Kovalenko M., Medyankin A., “Analysis of the efficiency PETSc and PETIGA libraries in solving the problem of crystal growth”, CEUR Workshop Proceedings, 1513 (2015), 109–122

[2] Galenko P., Danilov D., Lebedev V., “Phase-field-crystal and Swift–Hohenberg equations with fast dynamics”, Physical Review E, 79:5 (2009), 051110, 11 pp. | DOI | MR

[3] Galenko P. K., Elder K. R., “Marginal stability analysis of the phase field crystal model in one spatial dimension”, Physical Review B, 83:6 (2011), 064113, 8 pp. | DOI | MR

[4] Hughes T. J. R., Cottrell J. A., Bazilevs Y., “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement”, Computer Methods in Applied Mechanics and Engineering, 194:39–41 (2005), 4135–4195 | DOI | MR | Zbl

[5] Cottrell J. A., Hughes T. J. R., Bazilevs Y., Isogeometric analysis: toward integration of CAD and FEA, Wiley, 2009, 360 pp.

[6] Bueno J., Starodumov I., Gomez H., Galenko P., Alexandrov D., “Three dimensional structures predicted by the modified phase field crystal equation”, Computational Materials Science, 111 (2016), 310–312 | DOI