On non-extensible solutions to second-order Emden–Fowler type differential equations with negative potential
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 231-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Second-order Emden–Fowler type differential equations with regular nonlinearity and bounded negative potential depending on an independent variable, the solution and its first derivative are considered. The results on the existence of asymptotes of nontrivial solutions and estimates of the distance from the initial point to left and right asymptotes positions are given. Continuous dependence of the positions of left and right asymptotes of nontrivial solutions is obtained. The existence of a non-extensible solution with prescribed domain is proved.
Keywords: nonlinear differential equations, second-order, Emden–Fowler equations, continuous dependence of asymptote position, prescribed domain.
@article{VUU_2016_26_2_a8,
     author = {T. A. Korchemkina},
     title = {On non-extensible solutions to second-order {Emden{\textendash}Fowler} type differential equations with negative potential},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {231--238},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a8/}
}
TY  - JOUR
AU  - T. A. Korchemkina
TI  - On non-extensible solutions to second-order Emden–Fowler type differential equations with negative potential
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 231
EP  - 238
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a8/
LA  - ru
ID  - VUU_2016_26_2_a8
ER  - 
%0 Journal Article
%A T. A. Korchemkina
%T On non-extensible solutions to second-order Emden–Fowler type differential equations with negative potential
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 231-238
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a8/
%G ru
%F VUU_2016_26_2_a8
T. A. Korchemkina. On non-extensible solutions to second-order Emden–Fowler type differential equations with negative potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 231-238. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a8/

[1] Kiguradze I. T., Chanturiya T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Nauka, M., 1990, 432 pp.

[2] Mitidieri E., Pohozhaev S. I., “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proceedings of the Steklov Institute of Mathematics, 234 (2001), 1–362 | MR

[3] Astashova I., “On quasi-periodic solutions to a higher-order Emden–Fowler type differential equation”, Boundary Value Problems, 2014, 174, 8 pp. | DOI | MR | Zbl

[4] Astashova I., “Uniform estimates and existence of solutions with prescribed domain to nonlinear third-order differential equation”, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, 47, Springer, New York, 2013, 227–237 | DOI | MR | Zbl

[5] Kondrat'ev V. A., Nikishkin V. A., “On the positive solutions of the equation $y''=p(x)y^k$”, Some problems of the qualitative theory of differential equations and the theory of motion control, Saransk, 1980, 131–141 (in Russian)

[6] Astashova I. V., “Qualitative properties of solutions to quasilinear ordinary differential equations”, Qualitative properties of solutions to differential equations and related topics of spectral analysis, Unity-Dana, M., 2012, 22–288 (in Russian)

[7] Dulina K. M., Korchemkina T. A., “On existence of solutions to second-order Emden–Fowler type differential equations with prescribed domain”, Qualitative theory of differential equations and applications, Proceedings of the International Conference, Moscow State University of Economics, Statistics, and Informatics, 2014, 19–27 (in Russian)