On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 221-230
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a linear time-varying control system with locally integrable and integrally bounded coefficients
\begin{equation}
\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad
u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1}
\end{equation}
We construct control of the system $(1)$ as a linear feedback
$u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system
\begin{equation}
\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant
0,
\tag{2}
\end{equation}
a definition of uniform global quasi-attainability is introduced. This notion is a weakening of the property of uniform global attainability. The last property means existence of matrix $U(t)$, $t\geqslant 0$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. We prove that uniform global quasi-attainability implies global scalarizability. The last property means that for any given locally integrable and integrally bounded scalar function $p=p(t)$, $t\geqslant0$, there exists a measurable and bounded function $U=U(t)$, $t\geqslant 0$, which ensures asymptotic equivalence of the system $(2)$ and the system of scalar type $\dot z=p(t)z$, $z\in\mathbb{R}^n$, $t\geqslant0$.
Keywords:
linear control system, Lyapunov exponents, global scalarizability.
@article{VUU_2016_26_2_a7,
author = {A. A. Kozlov},
title = {On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {221--230},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/}
}
TY - JOUR AU - A. A. Kozlov TI - On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 221 EP - 230 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/ LA - ru ID - VUU_2016_26_2_a7 ER -
%0 Journal Article %A A. A. Kozlov %T On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 221-230 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/ %G ru %F VUU_2016_26_2_a7
A. A. Kozlov. On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 221-230. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/