On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 221-230

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear time-varying control system with locally integrable and integrally bounded coefficients \begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation} We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system \begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation} a definition of uniform global quasi-attainability is introduced. This notion is a weakening of the property of uniform global attainability. The last property means existence of matrix $U(t)$, $t\geqslant 0$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. We prove that uniform global quasi-attainability implies global scalarizability. The last property means that for any given locally integrable and integrally bounded scalar function $p=p(t)$, $t\geqslant0$, there exists a measurable and bounded function $U=U(t)$, $t\geqslant 0$, which ensures asymptotic equivalence of the system $(2)$ and the system of scalar type $\dot z=p(t)z$, $z\in\mathbb{R}^n$, $t\geqslant0$.
Keywords: linear control system, Lyapunov exponents, global scalarizability.
@article{VUU_2016_26_2_a7,
     author = {A. A. Kozlov},
     title = {On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {221--230},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/}
}
TY  - JOUR
AU  - A. A. Kozlov
TI  - On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 221
EP  - 230
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/
LA  - ru
ID  - VUU_2016_26_2_a7
ER  - 
%0 Journal Article
%A A. A. Kozlov
%T On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 221-230
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/
%G ru
%F VUU_2016_26_2_a7
A. A. Kozlov. On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 221-230. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a7/