Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 215-220
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear $n$-th order differential equations with lower term are considered. With the help of the contraction mapping principle an asymptotic equivalence of solutions to these equations is investigated in the case of exponentially equivalent right-hand sides. Obtained sufficient conditions for asymptotic equivalence of solutions extend and generalize results stated in previous author’s papers. The result, describing the asymptotic behaviour of all tending to zero at infinity solutions to second order differential equations with regular Emden–Fowler type nonlinearity and zero right-hand side appearing while investigating quasilinear elliptic equations, is stated. On the basis of this result the asymptotic behaviour of solutions to a corresponding equation with nonzero right-hand side is described.
Keywords: nonlinear ordinary differential equations, asymptotic equivalence.
@article{VUU_2016_26_2_a6,
     author = {S. A. Zabolotskiy},
     title = {Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {215--220},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/}
}
TY  - JOUR
AU  - S. A. Zabolotskiy
TI  - Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 215
EP  - 220
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/
LA  - ru
ID  - VUU_2016_26_2_a6
ER  - 
%0 Journal Article
%A S. A. Zabolotskiy
%T Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 215-220
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/
%G ru
%F VUU_2016_26_2_a6
S. A. Zabolotskiy. Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 215-220. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/

[1] Bellman R., Stability theory of differential equations, McGraw-Hill, New York, 1953, 166 pp. | MR | Zbl

[2] Kiguradze I. T., Chanturiya T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Nauka, M., 1990, 432 pp.

[3] Astashova I. V., “Qualitative properties of solutions to quasilinear ordinary differential equations”, Qualitative properties of solutions to differential equations and related topics of spectral analysis, Unity-Dana, M., 2012, 22–288 (in Russian)

[4] Astashova I. V., “On asymptotic equivalence of nonlinear differential equations”, Differ. Uravn., 32:6 (1996), 855 (in Russian)

[5] Astashova I., “On asymptotic behavior of solutions to a quasi-linear second order differential equation”, Functional Differential Equations, 16:1 (2009), 93–115 | MR | Zbl

[6] Zabolotskiy S. A., “On asymptotic equivalence of Lane–Emden type differential equations and some generalizations”, Functional Differential Equations, 22:3–4 (2015), 169–177 | MR

[7] Zabolotskiy S. A., “On asymptotic equivalence of solutions to Lane–Emden type equations with power coefficient”, Differ. Uravn., 51:6 (2015), 832 (in Russian) | Zbl

[8] Astashova I. V., “On asymptotic equivalence of $n$-th order nonlinear differential equations”, Tatra Mt. Math. Publ., 63 (2015), 31–38 | MR | Zbl

[9] Egorov Yu. V., Kondrat'ev V. A., Oleinik O. A., “Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains”, Sbornik: Mathematics, 189:3 (1998), 45–68 (in Russian) | DOI | MR | Zbl

[10] Reinfelds A., “Asymptotic equivalence of difference equations in Banach space”, Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics Statistics, 102, eds. Z. AlSharawi, J. M. Cushing, S. Elaydi, Springer, 2014, 215–222 | DOI | MR | Zbl