@article{VUU_2016_26_2_a6,
author = {S. A. Zabolotskiy},
title = {Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {215--220},
year = {2016},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/}
}
TY - JOUR AU - S. A. Zabolotskiy TI - Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 215 EP - 220 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/ LA - ru ID - VUU_2016_26_2_a6 ER -
%0 Journal Article %A S. A. Zabolotskiy %T Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 215-220 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/ %G ru %F VUU_2016_26_2_a6
S. A. Zabolotskiy. Asymptotic behaviour of solutions to nonlinear differential equations with exponentially equivalent right-hand sides. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 215-220. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a6/
[1] Bellman R., Stability theory of differential equations, McGraw-Hill, New York, 1953, 166 pp. | MR | Zbl
[2] Kiguradze I. T., Chanturiya T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Nauka, M., 1990, 432 pp.
[3] Astashova I. V., “Qualitative properties of solutions to quasilinear ordinary differential equations”, Qualitative properties of solutions to differential equations and related topics of spectral analysis, Unity-Dana, M., 2012, 22–288 (in Russian)
[4] Astashova I. V., “On asymptotic equivalence of nonlinear differential equations”, Differ. Uravn., 32:6 (1996), 855 (in Russian)
[5] Astashova I., “On asymptotic behavior of solutions to a quasi-linear second order differential equation”, Functional Differential Equations, 16:1 (2009), 93–115 | MR | Zbl
[6] Zabolotskiy S. A., “On asymptotic equivalence of Lane–Emden type differential equations and some generalizations”, Functional Differential Equations, 22:3–4 (2015), 169–177 | MR
[7] Zabolotskiy S. A., “On asymptotic equivalence of solutions to Lane–Emden type equations with power coefficient”, Differ. Uravn., 51:6 (2015), 832 (in Russian) | Zbl
[8] Astashova I. V., “On asymptotic equivalence of $n$-th order nonlinear differential equations”, Tatra Mt. Math. Publ., 63 (2015), 31–38 | MR | Zbl
[9] Egorov Yu. V., Kondrat'ev V. A., Oleinik O. A., “Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains”, Sbornik: Mathematics, 189:3 (1998), 45–68 (in Russian) | DOI | MR | Zbl
[10] Reinfelds A., “Asymptotic equivalence of difference equations in Banach space”, Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics Statistics, 102, eds. Z. AlSharawi, J. M. Cushing, S. Elaydi, Springer, 2014, 215–222 | DOI | MR | Zbl