@article{VUU_2016_26_2_a5,
author = {K. M. Dulina},
title = {On asymptotic behaviour of solutions with infinite derivative for regular second-order {Emden{\textendash}Fowler} type differential equations with negative potential},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {207--214},
year = {2016},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/}
}
TY - JOUR AU - K. M. Dulina TI - On asymptotic behaviour of solutions with infinite derivative for regular second-order Emden–Fowler type differential equations with negative potential JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 207 EP - 214 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/ LA - ru ID - VUU_2016_26_2_a5 ER -
%0 Journal Article %A K. M. Dulina %T On asymptotic behaviour of solutions with infinite derivative for regular second-order Emden–Fowler type differential equations with negative potential %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 207-214 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/ %G ru %F VUU_2016_26_2_a5
K. M. Dulina. On asymptotic behaviour of solutions with infinite derivative for regular second-order Emden–Fowler type differential equations with negative potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 207-214. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/
[1] Kiguradze I. T., Chanturiya T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Nauka, M., 1990, 432 pp.
[2] Kondrat'ev V. A., Nikishkin V. A., “On the positive solutions of the equation $y''=p(x)y^k$”, Some problems of the qualitative theory of differential equations and the theory of motion control, Saransk, 1980, 131–141 (in Russian)
[3] Astashova I., “On asymptotic behavior of solutions to a quasilinear second order differential equation”, Functional Differential Equations, 16:1 (2009), 93–115 | MR | Zbl
[4] Astashova I. V., “Qualitative properties of solutions to quasilinear ordinary differential equations”, Qualitative properties of solutions to differential equations and related topics of spectral analysis, Unity-Dana, M., 2012, 22–288 (in Russian)
[5] Astashova I. V., “On asymptotic classification of solutions to nonlinear third- and fourth- order differential equations with power nonlinearity”, Vestn. Mosk. Gos. Tekh. Univ. Im. N. Eh. Baumana, Ser. Estestv. Nauki, 2015, no. 2, 3–25 (in Russian)
[6] Dulina K. M., Korchemkina T. A., “Asymptotic classification of solutions to second-order Emden–Fowler type differential equations with negative potential”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2015, no. 6(128), 50–56 (in Russian)
[7] Dulina K. M., Korchemkina T. A., “Classification of solutions to singular nonlinear second-order Emden–Fowler type equations”, Information Technology and Nanotechnology, Proceedings of the International Conference and School for Young Scientists, Samara Research Centre of RAS, Samara, 2015, 45–46 (in Russian) | MR
[8] Astashova I., “Application of dynamical systems to the study of asymptotic properties of solutions to nonlinear higher-order differential equations”, Journal of Mathematical Sciences, 126:5 (2005), 1361–1391 | DOI | MR | Zbl
[9] Astashova I. V., “Uniform estimates of positive solutions to quasilinear differential equations”, Izvestiya: Mathematics, 72:6 (2008), 1141–1160 | DOI | DOI | MR | Zbl
[10] Dulina K. M., Korchemkina T. A., “On existence of solutions to second-order Emden–Fowler type differential equations with prescribed domain”, Qualitative theory of differential equations and applications, Proceedings of the International Conference, Moscow State University of Economics, Statistics, and Informatics, 2014, 19–27 (in Russian)