On asymptotic behaviour of solutions with infinite derivative for regular second-order Emden–Fowler type differential equations with negative potential
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 207-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the second-order Emden–Fowler type differential equation with negative potential $y''-p(x,\, y,\, y') |y|^k \text{ sgn } y=0$ in case of regular nonlinearity $k>1.$ We assume that the function $p(x,\, u,\, v)$ is continuous in $x$ and Lipschitz continuous in two last variables. We investigate asymptotic behaviour of non-extensible solutions to the equation above. We consider the case of a positive function $p(x,\, u,\, v)$ unbounded from above and bounded away from 0 from below. The conditions guaranteeing an existence of a vertical asymptote of all nontrivial non-extensible solutions to the equation are obtained. Also the sufficient conditions providing the following solutions' properties $\lim\limits_{x \to a} |y'(x)| = +\infty$, $\lim\limits_{x \to a} |y(x)| <+ \infty,$ where $a < \infty$ is a boundary point, are obtained.
Keywords: second-order Emden–Fowler type differential equations, regular nonlinearity, asymptotic behaviour.
@article{VUU_2016_26_2_a5,
     author = {K. M. Dulina},
     title = {On asymptotic behaviour of solutions with infinite derivative for regular second-order {Emden{\textendash}Fowler} type differential equations with negative potential},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {207--214},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/}
}
TY  - JOUR
AU  - K. M. Dulina
TI  - On asymptotic behaviour of solutions with infinite derivative for regular second-order Emden–Fowler type differential equations with negative potential
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 207
EP  - 214
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/
LA  - ru
ID  - VUU_2016_26_2_a5
ER  - 
%0 Journal Article
%A K. M. Dulina
%T On asymptotic behaviour of solutions with infinite derivative for regular second-order Emden–Fowler type differential equations with negative potential
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 207-214
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/
%G ru
%F VUU_2016_26_2_a5
K. M. Dulina. On asymptotic behaviour of solutions with infinite derivative for regular second-order Emden–Fowler type differential equations with negative potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 207-214. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a5/

[1] Kiguradze I. T., Chanturiya T. A., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Nauka, M., 1990, 432 pp.

[2] Kondrat'ev V. A., Nikishkin V. A., “On the positive solutions of the equation $y''=p(x)y^k$”, Some problems of the qualitative theory of differential equations and the theory of motion control, Saransk, 1980, 131–141 (in Russian)

[3] Astashova I., “On asymptotic behavior of solutions to a quasilinear second order differential equation”, Functional Differential Equations, 16:1 (2009), 93–115 | MR | Zbl

[4] Astashova I. V., “Qualitative properties of solutions to quasilinear ordinary differential equations”, Qualitative properties of solutions to differential equations and related topics of spectral analysis, Unity-Dana, M., 2012, 22–288 (in Russian)

[5] Astashova I. V., “On asymptotic classification of solutions to nonlinear third- and fourth- order differential equations with power nonlinearity”, Vestn. Mosk. Gos. Tekh. Univ. Im. N. Eh. Baumana, Ser. Estestv. Nauki, 2015, no. 2, 3–25 (in Russian)

[6] Dulina K. M., Korchemkina T. A., “Asymptotic classification of solutions to second-order Emden–Fowler type differential equations with negative potential”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2015, no. 6(128), 50–56 (in Russian)

[7] Dulina K. M., Korchemkina T. A., “Classification of solutions to singular nonlinear second-order Emden–Fowler type equations”, Information Technology and Nanotechnology, Proceedings of the International Conference and School for Young Scientists, Samara Research Centre of RAS, Samara, 2015, 45–46 (in Russian) | MR

[8] Astashova I., “Application of dynamical systems to the study of asymptotic properties of solutions to nonlinear higher-order differential equations”, Journal of Mathematical Sciences, 126:5 (2005), 1361–1391 | DOI | MR | Zbl

[9] Astashova I. V., “Uniform estimates of positive solutions to quasilinear differential equations”, Izvestiya: Mathematics, 72:6 (2008), 1141–1160 | DOI | DOI | MR | Zbl

[10] Dulina K. M., Korchemkina T. A., “On existence of solutions to second-order Emden–Fowler type differential equations with prescribed domain”, Qualitative theory of differential equations and applications, Proceedings of the International Conference, Moscow State University of Economics, Statistics, and Informatics, 2014, 19–27 (in Russian)