An example of a linear discrete system with unstable Lyapunov exponents
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 169-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a discrete time-varying linear system \begin{equation} x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, \tag{1} \end{equation} where $A(\cdot)$ is completely bounded on $\mathbb N$, i.e., $\sup_{m\in\mathbb N}\bigl(\|A(m)\|+\|A^{-1}(m)\|\bigr)<\infty$. Let $\lambda_1(A)\le\ldots\le\lambda_n(A)$ be the Lyapunov spectrum of the system (1). It is called stable if for any $\varepsilon>0$ there exists a $\delta>0$ such that for every completely bounded $n\times n$-matrix $R(\cdot)$, $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, the inequality $$\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon $$ holds. We construct an example of the system (1) with unstable Lyapunov spectrum.
Keywords: discrete time-varying linear system, Lyapunov exponents
Mots-clés : perturbations of coefficients.
@article{VUU_2016_26_2_a2,
     author = {I. N. Banshchikova},
     title = {An example of a linear discrete system with unstable {Lyapunov} exponents},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {169--176},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a2/}
}
TY  - JOUR
AU  - I. N. Banshchikova
TI  - An example of a linear discrete system with unstable Lyapunov exponents
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 169
EP  - 176
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a2/
LA  - ru
ID  - VUU_2016_26_2_a2
ER  - 
%0 Journal Article
%A I. N. Banshchikova
%T An example of a linear discrete system with unstable Lyapunov exponents
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 169-176
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a2/
%G ru
%F VUU_2016_26_2_a2
I. N. Banshchikova. An example of a linear discrete system with unstable Lyapunov exponents. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 169-176. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a2/

[1] Demidovich V. B., “On a criterion of stability for difference equations”, Differ. Uravn., 5:7 (1969), 1247–1255 (in Russian) | MR | Zbl

[2] Gaishun I. V., Discrete-time systems, Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 2001, 400 pp.

[3] Banshchikova I. N., Popova S. N., “On the spectral set of a linear discrete system with stable Lyapunov exponents”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'ut. Nauki, 26:1 (2016), 15–26 (in Russian)

[4] Czornik A., Perturbation theory for Lyapunov exponents of discrete linear systems, AGH University of Science and Technology Press, Kraków, 2012, 110 pp.

[5] Izobov N. A., “Linear systems of ordinary differential equations”, Journal of Soviet Mathematics, 5:1 (1976), 46–96 | DOI | MR | Zbl | Zbl

[6] Izobov N. A., Introduction to the theory of Lyapunov exponents, Belarusian State University, Minsk, 2006, 319 pp.

[7] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Math. Z., 31 (1930), 748–766 | DOI | MR | Zbl

[8] Adrianova L. Ya., Introduction to the theory of linear systems of differential equations, Saint Petersburg State University, St. Petersburg, 1992, 240 pp. | MR

[9] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1986 | MR