The programmed iterations method in a game problem of guidance
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 271-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of a differential game of guidance–evasion on the basis of the programmed iterations method is considered. The basic goal consists in the construction of a set of positional absorption corresponding to alternative partition following from the fundamental alternative theorem of N. N. Krasovskii and A. I. Subbotin. For construction, an operator of programmed absorption defined by the target set in a guidance problem is used. The set defining phase constraints is gradually transformed by the above-mentioned operator; therefore, the sequence for which the corresponding limit coincides with the set of positional absorption is realized. It is assumed that the target set is closed and the set defining phase constraints of initial problem has closed sections corresponding to fixation of time. Properties having the sense of one-sided continuity of the positional absorption set under variation of sets defining initial differential game are established. It is shown that the limit of iterated procedure coincides with the set of successful solvability in a class of set-valued generalized quasistrategies.
Keywords: differential game, programmed iterations method, set of positional absorption.
@article{VUU_2016_26_2_a12,
     author = {A. G. Chentsov},
     title = {The programmed iterations method in a game problem of guidance},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {271--282},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a12/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - The programmed iterations method in a game problem of guidance
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 271
EP  - 282
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a12/
LA  - ru
ID  - VUU_2016_26_2_a12
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T The programmed iterations method in a game problem of guidance
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 271-282
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a12/
%G ru
%F VUU_2016_26_2_a12
A. G. Chentsov. The programmed iterations method in a game problem of guidance. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 271-282. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a12/

[1] Krasovskii N. N., Subbotin A. I., “An alternative for the game problem of convergence”, Journal of Applied Mathematics and Mechanics, 34:6 (1970), 948–965 | DOI | MR | Zbl

[2] Krasovskii N.N, Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp. | MR

[3] Kryazhimskii A. V., “On the theory of positional differential games of convergence–evasion”, Soviet Mathematics. Doklady, 19 (1978), 408–412 | MR | Zbl

[4] Chentsov A. G., “On the structure of a game problem of convergence”, Soviet Mathematics. Doklady, 16 (1975), 1404–1408 | MR | Zbl

[5] Chentsov A. G., “On a game problem of guidance”, Soviet Mathematics. Doklady, 17 (1976), 73–77 | MR | Zbl

[6] Čencov A. G., “On a game problem of converging at a given instant of time”, Mathematics of the USSR – Sbornik, 28:3 (1976), 353–376 | DOI | MR | Zbl

[7] Ukhobotov V. I., “Construction of a stable bridge for a class of linear games”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 350–354 | DOI | MR | MR

[8] Chistyakov S. V., “On solving pursuit game problems”, Journal of Applied Mathematics and Mechanics, 41:5 (1977), 845–852 | DOI | MR

[9] Chentsov A. G., “About an alternative to the class of quasistrategies for differential pursuit–evasion game”, Differ. Uravn., 16:10 (1980), 1801–1808 (in Russian) | MR | Zbl

[10] Chentsov A. G., The programmed iterations method for differential pursuit–evasion game, Deposited in VINITI 04.06.1979, No 1933-79, Institute of Mathematics and Mechanics, Ural Research Centre of RAS, Sverdlovsk, 1979, 103 pp. (in Russian)

[11] Chentsov A. G., “Programmed iteration method and sets of positional absorption”, Doklady Mathematics, 93:2 (2016), 144–148 | DOI | DOI | MR | Zbl

[12] Engelking R., General topology, PWN, Warszawa, 1985, 752 pp. | MR