@article{VUU_2016_26_2_a10,
author = {I. G. Nizovtseva and P. K. Galenko and D. V. Alexandrov and S. V. Vikharev and E. A. Titova and I. S. Sukhachev},
title = {Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic {Allen{\textendash}Cahn} equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {245--257},
year = {2016},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/}
}
TY - JOUR AU - I. G. Nizovtseva AU - P. K. Galenko AU - D. V. Alexandrov AU - S. V. Vikharev AU - E. A. Titova AU - I. S. Sukhachev TI - Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 245 EP - 257 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/ LA - ru ID - VUU_2016_26_2_a10 ER -
%0 Journal Article %A I. G. Nizovtseva %A P. K. Galenko %A D. V. Alexandrov %A S. V. Vikharev %A E. A. Titova %A I. S. Sukhachev %T Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 245-257 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/ %G ru %F VUU_2016_26_2_a10
I. G. Nizovtseva; P. K. Galenko; D. V. Alexandrov; S. V. Vikharev; E. A. Titova; I. S. Sukhachev. Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/
[1] Cahn J. W., Allen S. M., “A microscopic theory of domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics”, J. Phys. Colloq., 38:C7 (1977), 51–54
[2] Allen S. M., Cahn J. W., “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metall., 27 (1979), 1085–1095 | DOI
[3] Wheeler A., Boettinger W. J., McFadden G. B., “Phase-field model for isothermal phase transitions in binary alloys”, Phys. Rev. A, 45:10 (1992), 7424–7240 | DOI
[4] Gouyet J. F., “Generalized Allen–Cahn equations to describe far-from-equilibrium order-disorder dynamics”, Phys. Rev. E, 51:3 (1995), 1695–1710 | DOI
[5] Fife P. C., Lacey A. A., “Motion by curvature in generalized Cahn–Allen models”, J. Stat. Phys., 77:1–2 (1994), 173–181 | DOI | MR | Zbl
[6] Benes̆ M., Chalupecký V., Mikula K., “Geometrical image segmentation by the Allen–Cahn equation”, Applied Numerical Mathematics, 51 (2004), 187–205 | DOI | MR | Zbl
[7] Alfaro M., Hilhorst D., “Generation of interface for an Allen–Cahn equation with nonlinear diffusion”, Math. Model. Nat. Phenom., 5 (2010), 1–12 | DOI | MR | Zbl
[8] Caginalp G., Chen X., “Phase field equations in the singular limit of sharp interface problems”, IMA Volume of Mathematics and Its Applications, 43 (1992), 1–28 | DOI | MR
[9] Bates P. W., Chen F., “Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen–Cahn equation”, J. Math. Anal. Appl., 273 (2002), 45–57 | DOI | MR | Zbl
[10] Galenko P., Jou D., “Diffuse-interface model for rapid phase transformations in nonequilibrium systems”, Phys. Rev. E, 71 (2005), 046125, 13 pp. | DOI
[11] Yang Y., Humadi H., Buta D., Laird B. B., Sun D., Hoyt J. J., Asta M., “Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts”, Phys. Rev. Lett., 107 (2011), 025505, 4 pp. | DOI
[12] Jou D., Galenko P., “Coarse graining for the phase-field model of fast phase transitions”, Phys. Rev. E, 88 (2013), 042151, 8 pp. | DOI
[13] Field R. J., Burger M. (eds.), Oscillations and traveling waves in chemical systems, Wiley, New York, 1985, 681 pp.
[14] Galenko P. K., Abramova E. V., Jou D., Danilov D. A., Lebedev V. G., Herlach D. M., “Solute trapping in rapid solidification of a binary dilute system: A phase-field study”, Phys. Rev. E, 84 (2011), 041143, 17 pp. | DOI
[15] Salhoumi A., Galenko P. K., “Gibbs–Thomson condition for the rapidly moving interface in a binary system”, Physica A, 447 (2016), 161–171 | DOI | MR
[16] Feng Zh., “The first-integral method to study the Burgers–Korteweg-de Vries equation”, J. Phys. A: Math. Gen., 35 (2002), 343–349 | DOI | MR | Zbl
[17] Lu B., Zhang H-Q., Xie F.-D., “Traveling wave solutions of nonlinear partial differential equations by using the first integral method”, Applied Mathematics and Computations, 216 (2010), 1329–1336 | DOI | MR | Zbl
[18] Bourbaki N., Commutative algebra, Springer, 1998, 625 pp. | MR | Zbl
[19] Feng Zh., Wang X., “The first integral method to the two-dimensional Burgers–Korteweg-de Vries equation”, Physics Letters A, 308 (2003), 173–178 | DOI | MR | Zbl
[20] Ahmed Ali A. H., Raslan K. R., “New solutions for some important partial differential equations”, International Journal of Nonlinear Science, 4 (2007), 109–117 | MR
[21] Wazwaz A.-M., “The tanh method for traveling wave solutions of nonlinear equations”, Applied Mathematics and Computation, 154:3 (2004), 713–723 | DOI | MR | Zbl
[22] Taşcan F., Bekir A., “Travelling wave solutions of Cahn–Allen equation by using first integral method”, Applied Mathematics and Computation, 207:1 (2009), 279–282 | DOI | MR
[23] Choi J.-W., Lee H. G., Jeong D., Kim J., “An unconditionally gradient stable numerical method for solving the Allen–Cahn equuation”, Physica A, 388 (2009), 1791–1803 | DOI | MR
[24] Herlach D. M., Galenko P. K., Holland-Moritz D., Metastable solids from undercooled melts, Elsevier, Amsterdam, 2007, 432 pp.