Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 245-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To obtain solutions of the hyperbolic Allen–Cahn equation, the first integral method, which follows from well-known Hilbert Null-theorem, is used. Exact analytical solutions are obtained in a form of traveling waves, which define complete class of the hyperbolic Allen–Cahn equation. It is shown that two subclasses of solutions exist within this complete class. The first subclass exhibits continual solutions and the second subclass is represented by solutions with singularity at the origin of coordinate system. Such non-uniqueness of solutions stands a question about stable attractor, i. e., about the traveling wave to which non-stationary solutions may attract. The obtained solutions include earlier solutions for the parabolic Allen–Cahn equation in a form of finite number of $\tanh$-functions.
Keywords: traveling wave, Allen–Cahn equation, first integral method, division theorem.
@article{VUU_2016_26_2_a10,
     author = {I. G. Nizovtseva and P. K. Galenko and D. V. Alexandrov and S. V. Vikharev and E. A. Titova and I. S. Sukhachev},
     title = {Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic {Allen{\textendash}Cahn} equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {245--257},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/}
}
TY  - JOUR
AU  - I. G. Nizovtseva
AU  - P. K. Galenko
AU  - D. V. Alexandrov
AU  - S. V. Vikharev
AU  - E. A. Titova
AU  - I. S. Sukhachev
TI  - Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 245
EP  - 257
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/
LA  - ru
ID  - VUU_2016_26_2_a10
ER  - 
%0 Journal Article
%A I. G. Nizovtseva
%A P. K. Galenko
%A D. V. Alexandrov
%A S. V. Vikharev
%A E. A. Titova
%A I. S. Sukhachev
%T Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 245-257
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/
%G ru
%F VUU_2016_26_2_a10
I. G. Nizovtseva; P. K. Galenko; D. V. Alexandrov; S. V. Vikharev; E. A. Titova; I. S. Sukhachev. Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen–Cahn equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/

[1] Cahn J. W., Allen S. M., “A microscopic theory of domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics”, J. Phys. Colloq., 38:C7 (1977), 51–54

[2] Allen S. M., Cahn J. W., “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metall., 27 (1979), 1085–1095 | DOI

[3] Wheeler A., Boettinger W. J., McFadden G. B., “Phase-field model for isothermal phase transitions in binary alloys”, Phys. Rev. A, 45:10 (1992), 7424–7240 | DOI

[4] Gouyet J. F., “Generalized Allen–Cahn equations to describe far-from-equilibrium order-disorder dynamics”, Phys. Rev. E, 51:3 (1995), 1695–1710 | DOI

[5] Fife P. C., Lacey A. A., “Motion by curvature in generalized Cahn–Allen models”, J. Stat. Phys., 77:1–2 (1994), 173–181 | DOI | MR | Zbl

[6] Benes̆ M., Chalupecký V., Mikula K., “Geometrical image segmentation by the Allen–Cahn equation”, Applied Numerical Mathematics, 51 (2004), 187–205 | DOI | MR | Zbl

[7] Alfaro M., Hilhorst D., “Generation of interface for an Allen–Cahn equation with nonlinear diffusion”, Math. Model. Nat. Phenom., 5 (2010), 1–12 | DOI | MR | Zbl

[8] Caginalp G., Chen X., “Phase field equations in the singular limit of sharp interface problems”, IMA Volume of Mathematics and Its Applications, 43 (1992), 1–28 | DOI | MR

[9] Bates P. W., Chen F., “Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen–Cahn equation”, J. Math. Anal. Appl., 273 (2002), 45–57 | DOI | MR | Zbl

[10] Galenko P., Jou D., “Diffuse-interface model for rapid phase transformations in nonequilibrium systems”, Phys. Rev. E, 71 (2005), 046125, 13 pp. | DOI

[11] Yang Y., Humadi H., Buta D., Laird B. B., Sun D., Hoyt J. J., Asta M., “Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts”, Phys. Rev. Lett., 107 (2011), 025505, 4 pp. | DOI

[12] Jou D., Galenko P., “Coarse graining for the phase-field model of fast phase transitions”, Phys. Rev. E, 88 (2013), 042151, 8 pp. | DOI

[13] Field R. J., Burger M. (eds.), Oscillations and traveling waves in chemical systems, Wiley, New York, 1985, 681 pp.

[14] Galenko P. K., Abramova E. V., Jou D., Danilov D. A., Lebedev V. G., Herlach D. M., “Solute trapping in rapid solidification of a binary dilute system: A phase-field study”, Phys. Rev. E, 84 (2011), 041143, 17 pp. | DOI

[15] Salhoumi A., Galenko P. K., “Gibbs–Thomson condition for the rapidly moving interface in a binary system”, Physica A, 447 (2016), 161–171 | DOI | MR

[16] Feng Zh., “The first-integral method to study the Burgers–Korteweg-de Vries equation”, J. Phys. A: Math. Gen., 35 (2002), 343–349 | DOI | MR | Zbl

[17] Lu B., Zhang H-Q., Xie F.-D., “Traveling wave solutions of nonlinear partial differential equations by using the first integral method”, Applied Mathematics and Computations, 216 (2010), 1329–1336 | DOI | MR | Zbl

[18] Bourbaki N., Commutative algebra, Springer, 1998, 625 pp. | MR | Zbl

[19] Feng Zh., Wang X., “The first integral method to the two-dimensional Burgers–Korteweg-de Vries equation”, Physics Letters A, 308 (2003), 173–178 | DOI | MR | Zbl

[20] Ahmed Ali A. H., Raslan K. R., “New solutions for some important partial differential equations”, International Journal of Nonlinear Science, 4 (2007), 109–117 | MR

[21] Wazwaz A.-M., “The tanh method for traveling wave solutions of nonlinear equations”, Applied Mathematics and Computation, 154:3 (2004), 713–723 | DOI | MR | Zbl

[22] Taşcan F., Bekir A., “Travelling wave solutions of Cahn–Allen equation by using first integral method”, Applied Mathematics and Computation, 207:1 (2009), 279–282 | DOI | MR

[23] Choi J.-W., Lee H. G., Jeong D., Kim J., “An unconditionally gradient stable numerical method for solving the Allen–Cahn equuation”, Physica A, 388 (2009), 1791–1803 | DOI | MR

[24] Herlach D. M., Galenko P. K., Holland-Moritz D., Metastable solids from undercooled melts, Elsevier, Amsterdam, 2007, 432 pp.