Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen--Cahn equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 245-257

Voir la notice de l'article provenant de la source Math-Net.Ru

To obtain solutions of the hyperbolic Allen–Cahn equation, the first integral method, which follows from well-known Hilbert Null-theorem, is used. Exact analytical solutions are obtained in a form of traveling waves, which define complete class of the hyperbolic Allen–Cahn equation. It is shown that two subclasses of solutions exist within this complete class. The first subclass exhibits continual solutions and the second subclass is represented by solutions with singularity at the origin of coordinate system. Such non-uniqueness of solutions stands a question about stable attractor, i. e., about the traveling wave to which non-stationary solutions may attract. The obtained solutions include earlier solutions for the parabolic Allen–Cahn equation in a form of finite number of $\tanh$-functions.
Keywords: traveling wave, Allen–Cahn equation, first integral method, division theorem.
@article{VUU_2016_26_2_a10,
     author = {I. G. Nizovtseva and P. K. Galenko and D. V. Alexandrov and S. V. Vikharev and E. A. Titova and I. S. Sukhachev},
     title = {Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic {Allen--Cahn} equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {245--257},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/}
}
TY  - JOUR
AU  - I. G. Nizovtseva
AU  - P. K. Galenko
AU  - D. V. Alexandrov
AU  - S. V. Vikharev
AU  - E. A. Titova
AU  - I. S. Sukhachev
TI  - Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen--Cahn equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 245
EP  - 257
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/
LA  - ru
ID  - VUU_2016_26_2_a10
ER  - 
%0 Journal Article
%A I. G. Nizovtseva
%A P. K. Galenko
%A D. V. Alexandrov
%A S. V. Vikharev
%A E. A. Titova
%A I. S. Sukhachev
%T Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen--Cahn equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 245-257
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/
%G ru
%F VUU_2016_26_2_a10
I. G. Nizovtseva; P. K. Galenko; D. V. Alexandrov; S. V. Vikharev; E. A. Titova; I. S. Sukhachev. Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen--Cahn equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a10/