Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 160-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers Birkhoff-type triangle-based interpolation of two-variable function by polynomials of $2k+1$ degree by set of two variables. Similar estimates are automatically transferred to error estimates of related finite element method. The approximation error estimates of derivatives for the given finite elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that obtained approximation error estimates for a function and its partial derivatives are unimprovable. Unimprovability is understood in a following sense: there exists a function from the given class and there exist absolute positive constants independent of triangulation such that for any nondegenerate triangle estimates from below are valid. In this work, a system of specific functions is offered for interpolation conditions. These functions allow to obtain of corresponding error estimates for definite partial derivatives.
Mots-clés : error of interpolation, triangulation
Keywords: piecewise polynomial function, finite element method.
@article{VUU_2016_26_2_a1,
     author = {V. S. Bazhenov and N. V. Latypova},
     title = {Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {160--168},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/}
}
TY  - JOUR
AU  - V. S. Bazhenov
AU  - N. V. Latypova
TI  - Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 160
EP  - 168
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/
LA  - ru
ID  - VUU_2016_26_2_a1
ER  - 
%0 Journal Article
%A V. S. Bazhenov
%A N. V. Latypova
%T Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 160-168
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/
%G ru
%F VUU_2016_26_2_a1
V. S. Bazhenov; N. V. Latypova. Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 160-168. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/

[1] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $\mathbb{R}^{n}$ with applications to finite element methods”, Arch. Ration. Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[2] Subbotin Yu. N., “Multidimensional multiple polynomial interpolation”, Methods of Approximation and Interpolation: Transactions, Computing Centre, Academy of Sciences of the USSR, Novosibirsk, 1981, 148–153 | MR

[3] Subbotin Yu. N., “Dependence of the estimates of approximation by interpolating polynomials of 5-th degree upon geometric properties of triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2, 1992, 110–119 (in Russian) | MR | Zbl

[4] Subbotin Yu. N., “A new cubic element in the FEM”, Proceedings of the Steklov Institute of Mathematics, 2005, suppl. 2, S176–S187 | MR | Zbl

[5] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Russian J. Numer. Anal. Math. Modelling, 14:2 (1999), 87–107 | DOI | MR | Zbl

[6] Baidakova N. V., “A method of Hermite interpolation by polynomials of the third degree on a triangle”, Proceedings of the Steklov Institute of Mathematics, 2005, suppl. 2, S49–S55 | MR | Zbl

[7] Latypova N. V., “Error estimates of approximation by polynomials of degree $4k+3$ on the triangle”, Proceedings of the Steklov Institute of Mathematics, 2002, suppl. 1, S190–S213 | MR | Zbl

[8] Latypova N. V., “Error of interpolation by piecewise cubic polynomial on triangle”, Vestn. Udmurt. Univ. Mat., 2003, no. 1, 3–18 (in Russian)

[9] Baidakova N. V., “New estimates of the error of approximation of derivatives under interpolation of a function on a triangle by polynomials of the third degree”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 13:1(2) (2013), 15–19 (in Russian) | Zbl

[10] Latypova N. V., “Error of interpolation by a piecewise parabolic polynomial on a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 91–97 (in Russian)

[11] Latypova N. V., “Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 3 (2011), 233–241 (in Russian)

[12] Latypova N. V., “Independence of interpolation error estimates by fourth-degree polynomials on angles in a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 3, 64–74 (in Russian) | Zbl

[13] Latypova N. V., “Independence of interpolation error estimates by fifth-degree polynomials on angles in a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 53–64 (in Russian) | Zbl

[14] Latypova N. V., “Error of interpolation by sixth-degree polynomials on a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 79–87 (in Russian) | Zbl

[15] Berezin I. S., Zhidkov N. P., Computing Methods, v. 1, Fizmatgiz, M., 1962, 464 pp. | MR

[16] Fadeev D. K., Sominskii I. S., Collection of problems on higher algebra, Nauka, M., 1977, 288 pp.