Keywords: piecewise polynomial function, finite element method.
@article{VUU_2016_26_2_a1,
author = {V. S. Bazhenov and N. V. Latypova},
title = {Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {160--168},
year = {2016},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/}
}
TY - JOUR AU - V. S. Bazhenov AU - N. V. Latypova TI - Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 160 EP - 168 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/ LA - ru ID - VUU_2016_26_2_a1 ER -
%0 Journal Article %A V. S. Bazhenov %A N. V. Latypova %T Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 160-168 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/ %G ru %F VUU_2016_26_2_a1
V. S. Bazhenov; N. V. Latypova. Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 160-168. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a1/
[1] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $\mathbb{R}^{n}$ with applications to finite element methods”, Arch. Ration. Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl
[2] Subbotin Yu. N., “Multidimensional multiple polynomial interpolation”, Methods of Approximation and Interpolation: Transactions, Computing Centre, Academy of Sciences of the USSR, Novosibirsk, 1981, 148–153 | MR
[3] Subbotin Yu. N., “Dependence of the estimates of approximation by interpolating polynomials of 5-th degree upon geometric properties of triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2, 1992, 110–119 (in Russian) | MR | Zbl
[4] Subbotin Yu. N., “A new cubic element in the FEM”, Proceedings of the Steklov Institute of Mathematics, 2005, suppl. 2, S176–S187 | MR | Zbl
[5] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Russian J. Numer. Anal. Math. Modelling, 14:2 (1999), 87–107 | DOI | MR | Zbl
[6] Baidakova N. V., “A method of Hermite interpolation by polynomials of the third degree on a triangle”, Proceedings of the Steklov Institute of Mathematics, 2005, suppl. 2, S49–S55 | MR | Zbl
[7] Latypova N. V., “Error estimates of approximation by polynomials of degree $4k+3$ on the triangle”, Proceedings of the Steklov Institute of Mathematics, 2002, suppl. 1, S190–S213 | MR | Zbl
[8] Latypova N. V., “Error of interpolation by piecewise cubic polynomial on triangle”, Vestn. Udmurt. Univ. Mat., 2003, no. 1, 3–18 (in Russian)
[9] Baidakova N. V., “New estimates of the error of approximation of derivatives under interpolation of a function on a triangle by polynomials of the third degree”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 13:1(2) (2013), 15–19 (in Russian) | Zbl
[10] Latypova N. V., “Error of interpolation by a piecewise parabolic polynomial on a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 91–97 (in Russian)
[11] Latypova N. V., “Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 3 (2011), 233–241 (in Russian)
[12] Latypova N. V., “Independence of interpolation error estimates by fourth-degree polynomials on angles in a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 3, 64–74 (in Russian) | Zbl
[13] Latypova N. V., “Independence of interpolation error estimates by fifth-degree polynomials on angles in a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 53–64 (in Russian) | Zbl
[14] Latypova N. V., “Error of interpolation by sixth-degree polynomials on a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 79–87 (in Russian) | Zbl
[15] Berezin I. S., Zhidkov N. P., Computing Methods, v. 1, Fizmatgiz, M., 1962, 464 pp. | MR
[16] Fadeev D. K., Sominskii I. S., Collection of problems on higher algebra, Nauka, M., 1977, 288 pp.