Mots-clés : group action
@article{VUU_2016_26_2_a0,
author = {E. A. Astashov},
title = {On the classification of singularities that are equivariant simple with respect to representations of cyclic groups},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {155--159},
year = {2016},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/}
}
TY - JOUR AU - E. A. Astashov TI - On the classification of singularities that are equivariant simple with respect to representations of cyclic groups JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 155 EP - 159 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/ LA - ru ID - VUU_2016_26_2_a0 ER -
%0 Journal Article %A E. A. Astashov %T On the classification of singularities that are equivariant simple with respect to representations of cyclic groups %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 155-159 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/ %G ru %F VUU_2016_26_2_a0
E. A. Astashov. On the classification of singularities that are equivariant simple with respect to representations of cyclic groups. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 155-159. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/
[1] Arnol'd V. I., “Normal forms of functions near degenerate critical points, the Weyl groups of $A_k$, $D_k$, $E_k$ and Lagrangian singularities”, Funct. Anal. Appl., 6:4 (1972), 254–272 | DOI | MR
[2] Arnol'd V. I., “Critical points of functions on a manifold with boundary, the simple Lie groups $B_k$, $C_k$, and $F_4$ and singularities of evolutes”, Russian Mathematical Surveys, 33:5 (1978), 99–116 | DOI | MR | Zbl | Zbl
[3] Domitrz W., Manoel M., Rios P. de M., “The Wigner caustic on shell and singularities of odd functions”, Journal of Geometry and Physics, 71 (2013), 58–72 | DOI | MR | Zbl
[4] Bruce J. W., Kirk N. P., du Plessis A. A., “Complete transversals and the classification of singularities”, Nonlinearity, 10 (1997), 253–275 | DOI | MR | Zbl
[5] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, v. I–II, Monographs Math., 82–83, Birkhauser, Boston, 1985–1988