On the classification of singularities that are equivariant simple with respect to representations of cyclic groups
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 155-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of classification of function germs $(\mathbb{C}^n, 0)\to(\mathbb{C}, 0)$ that are equivariant simple with respect to various representations of a finite cyclic group $\mathbb{Z}_m$, $m\ge3$, on $\mathbb{C}^n$ and $\mathbb{C}$ up to equivariant automorphisms of $\mathbb{C}^n$. In the case of matching scalar actions of the group it is shown that for $n\ge2$ there exist no equivariant simple function germs. This result is generalized to the cases where the group action in several variables in $\mathbb{C}^n$ coincides with the action of the group on $\mathbb{C}$. In addition, it is shown that in the case of non-matching scalar actions of $\mathbb{Z}_3$ on $\mathbb{C}^2$ and on $\mathbb{C}$ any equivariant simple function germ is equivalent to one of the germs $A_{3k+1}$, $k\in\mathbb{Z}_{\ge0}$.
Keywords: classification of singularities, simple singularities, equivariant functions.
Mots-clés : group action
@article{VUU_2016_26_2_a0,
     author = {E. A. Astashov},
     title = {On the classification of singularities that are equivariant simple with respect to representations of cyclic groups},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {155--159},
     year = {2016},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/}
}
TY  - JOUR
AU  - E. A. Astashov
TI  - On the classification of singularities that are equivariant simple with respect to representations of cyclic groups
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 155
EP  - 159
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/
LA  - ru
ID  - VUU_2016_26_2_a0
ER  - 
%0 Journal Article
%A E. A. Astashov
%T On the classification of singularities that are equivariant simple with respect to representations of cyclic groups
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 155-159
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/
%G ru
%F VUU_2016_26_2_a0
E. A. Astashov. On the classification of singularities that are equivariant simple with respect to representations of cyclic groups. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 2, pp. 155-159. http://geodesic.mathdoc.fr/item/VUU_2016_26_2_a0/

[1] Arnol'd V. I., “Normal forms of functions near degenerate critical points, the Weyl groups of $A_k$, $D_k$, $E_k$ and Lagrangian singularities”, Funct. Anal. Appl., 6:4 (1972), 254–272 | DOI | MR

[2] Arnol'd V. I., “Critical points of functions on a manifold with boundary, the simple Lie groups $B_k$, $C_k$, and $F_4$ and singularities of evolutes”, Russian Mathematical Surveys, 33:5 (1978), 99–116 | DOI | MR | Zbl | Zbl

[3] Domitrz W., Manoel M., Rios P. de M., “The Wigner caustic on shell and singularities of odd functions”, Journal of Geometry and Physics, 71 (2013), 58–72 | DOI | MR | Zbl

[4] Bruce J. W., Kirk N. P., du Plessis A. A., “Complete transversals and the classification of singularities”, Nonlinearity, 10 (1997), 253–275 | DOI | MR | Zbl

[5] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, v. I–II, Monographs Math., 82–83, Birkhauser, Boston, 1985–1988