Comparison of fuzzy numbers in decision-making problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 87-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with decision-making problems, when a decision maker receives information about possible pay-off as a result of a strategy selection. This information can be given as a fuzzy number and the problem of its comparison appears. A specific character of the problem is a main factor to choose the method of the fuzzy numbers comparison. In this paper an approach of comparing fuzzy numbers has been proposed, it's based on the comparison of $\alpha$-cuts. These $\alpha$-cuts are segments. During the comparison of the segments, each segment can contain a merit value; one of the decision-making criteria is chosen (Wald's maximin model, Regret theory models, Routh–Hurwitz stability criterion etc.). The results of the comparison are averaged out. Fuzzy numbers are compared according to these mean values. According to geometrical interpretation which has been given, the comparison of fuzzy numbers is equivalent to the comparison of figures' areas. These areas are formed by graphics of membership functions of the fuzzy numbers. As an example trapezoidal and bell-shaped fuzzy numbers are examined.
Keywords: fuzzy number, membership function, level set.
@article{VUU_2016_26_1_a7,
     author = {V. I. Ukhobotov and E. S. Mikhailova},
     title = {Comparison of fuzzy numbers in decision-making problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {87--94},
     year = {2016},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a7/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - E. S. Mikhailova
TI  - Comparison of fuzzy numbers in decision-making problems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 87
EP  - 94
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a7/
LA  - ru
ID  - VUU_2016_26_1_a7
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A E. S. Mikhailova
%T Comparison of fuzzy numbers in decision-making problems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 87-94
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a7/
%G ru
%F VUU_2016_26_1_a7
V. I. Ukhobotov; E. S. Mikhailova. Comparison of fuzzy numbers in decision-making problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a7/

[1] Zadeh L. A., “Fuzzy sets”, nformation and Control, 8:3 (1965), 338–353 | DOI | MR | Zbl

[2] Dutta P., Boruah H., Ali T., “Fuzzy arithmetic with and without using alpha-cut method: a comparative study”, International Journal of Latest Trends in Computing, 2:1 (2011), 99–107

[3] Bansal A., “Trapezoidal fuzzy numbers $(a,b,c,d)$: arithmetic behavior”, International Journal of Physical and Mathematical Sciences, 2:1 (2011), 39–44

[4] Chen S.-J. J., Hwang C. L., Fuzzy multiple attribute decision making: methods and applications, Springer, New York, 1992, 552 pp. | MR | Zbl

[5] Ukhobotov V. I., Shchichko P. V., “An approach to ranking fuzzy numbers”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program., 2011, no. 10, 54–62 (in Russian)

[6] Ukhobotov V. I., The selected chapters of the theory of fuzzy sets, Study guide, Chelyabinsk State University, Chelyabinsk, 2011, 245 pp.

[7] Gallyamov E. R., Ukhobotov V. I., “Computer implementation of operations with fuzzy numbers”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Vychisl. Mat. Inform., 3:3 (2014), 97–108 (in Russian)

[8] Ukhobotov V. I., Mihailova E. S., “An approach to the comparison of fuzzy numbers in decision-making problems”, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Mekh. Fiz., 7:1 (2015), 32–37 (in Russian)

[9] Zhukovskii V. I., Kudryavtsev K. N., Equilibrating conflicts and applications, Lenand, Moscow, 2012, 304 pp.

[10] Smirnov V. I., The course of higher mathematics, v. 2, Nauka, Moscow, 1974, 226 pp. | MR