Mots-clés : cyclic solution.
@article{VUU_2016_26_1_a6,
author = {L. I. Rodina and I. I. Tyuteev},
title = {About asymptotical properties of solutions of difference equations with random parameters},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {79--86},
year = {2016},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/}
}
TY - JOUR AU - L. I. Rodina AU - I. I. Tyuteev TI - About asymptotical properties of solutions of difference equations with random parameters JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 79 EP - 86 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/ LA - ru ID - VUU_2016_26_1_a6 ER -
%0 Journal Article %A L. I. Rodina %A I. I. Tyuteev %T About asymptotical properties of solutions of difference equations with random parameters %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 79-86 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/ %G ru %F VUU_2016_26_1_a6
L. I. Rodina; I. I. Tyuteev. About asymptotical properties of solutions of difference equations with random parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 79-86. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/
[1] Riznichenko G. Yu., Lectures on mathematical models in biology, Part 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.
[2] Ten V. V., Modelling and tool support of the bank's financial stability, Dr. Sci. (Econom.) Dissertation, Tambov, 2006, 350 pp. (in Russian)
[3] Sharkovskii A. N., “The coexistence of cycles for a continuous mapping of the line in itself”, Ukr. Mat. Zh., 16:1 (1964), 61–71 (in Russian)
[4] Li T.-Y., Yorke J. A., “Period three implies chaos”, The American Mathematical Monthly, 82:10 (1975), 985–992 | DOI | MR | Zbl
[5] Svirezhev Yu. M., Logofet D. O., Stability of biological communities, Nauka, Moscow, 1978, 352 pp. | MR
[6] Shapiro A. P., Luppov S. P., The recurrent equations in the theory of population biology, Nauka, Moscow, 1983, 133 pp. | MR
[7] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dynamics of one-dimensional mappings, Naukova dumka, Kiev, 1989, 216 pp. | MR
[8] Bobrovski D., Introduction to the theory of discrete-time dynamical systems, Regular and Chaotic Dynamics, Izhevsk, 2006, 360 pp. | MR
[9] Shiryaev A. N., Probability, Nauka, Moscow, 1989, 580 pp. | MR
[10] Masterkov Yu. V., Rodina L. I., “Sufficient conditions for the local controllability of systems with random parameters for an arbitrary number of system states”, Russian Mathematics, 52:3 (2008), 34–44 | DOI | MR | Zbl
[11] Rodina L. I., “On some probability models of dynamics of population growth”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 109–124 (in Russian) | Zbl
[12] Rodina L. I., “About invariant sets of control systems with random coefficients”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 109–121 (in Russian) | Zbl
[13] Khas'minskii R. Z., “Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems”, Theory Probab. Appl., 12:1 (1967), 144–147 | DOI | MR | Zbl
[14] Feller W., An introduction to probability theory and its applications, v. 2, Wiley, 1971 | MR | Zbl