About asymptotical properties of solutions of difference equations with random parameters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 79-86

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the asymptotic behavior of solutions of difference equations. Their right-hand sides at given time depend not only on the value of state at the previous moment, but also on a random value from a given set $\Omega$. We obtain conditions of Lyapunov stability and asymptotic stability of the equilibrium for all values of random parameters and with probability one. We show that the problem of coexistence of stochastic cycles of different periods has a solution, which strongly differs from a known Sharkovsky result for a determined difference equation. Under some conditions, the existence of a stochastic cycle of length $k$ implies the existence of a cycle of any length $\ell>k$.
Keywords: difference equations with random parameters, Lyapunov stability, asymptotical stability
Mots-clés : cyclic solution.
@article{VUU_2016_26_1_a6,
     author = {L. I. Rodina and I. I. Tyuteev},
     title = {About asymptotical properties of solutions of difference equations with random parameters},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - I. I. Tyuteev
TI  - About asymptotical properties of solutions of difference equations with random parameters
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 79
EP  - 86
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/
LA  - ru
ID  - VUU_2016_26_1_a6
ER  - 
%0 Journal Article
%A L. I. Rodina
%A I. I. Tyuteev
%T About asymptotical properties of solutions of difference equations with random parameters
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 79-86
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/
%G ru
%F VUU_2016_26_1_a6
L. I. Rodina; I. I. Tyuteev. About asymptotical properties of solutions of difference equations with random parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 79-86. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/