About asymptotical properties of solutions of difference equations with random parameters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 79-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the asymptotic behavior of solutions of difference equations. Their right-hand sides at given time depend not only on the value of state at the previous moment, but also on a random value from a given set $\Omega$. We obtain conditions of Lyapunov stability and asymptotic stability of the equilibrium for all values of random parameters and with probability one. We show that the problem of coexistence of stochastic cycles of different periods has a solution, which strongly differs from a known Sharkovsky result for a determined difference equation. Under some conditions, the existence of a stochastic cycle of length $k$ implies the existence of a cycle of any length $\ell>k$.
Keywords: difference equations with random parameters, Lyapunov stability, asymptotical stability
Mots-clés : cyclic solution.
@article{VUU_2016_26_1_a6,
     author = {L. I. Rodina and I. I. Tyuteev},
     title = {About asymptotical properties of solutions of difference equations with random parameters},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {79--86},
     year = {2016},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - I. I. Tyuteev
TI  - About asymptotical properties of solutions of difference equations with random parameters
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 79
EP  - 86
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/
LA  - ru
ID  - VUU_2016_26_1_a6
ER  - 
%0 Journal Article
%A L. I. Rodina
%A I. I. Tyuteev
%T About asymptotical properties of solutions of difference equations with random parameters
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 79-86
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/
%G ru
%F VUU_2016_26_1_a6
L. I. Rodina; I. I. Tyuteev. About asymptotical properties of solutions of difference equations with random parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 79-86. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a6/

[1] Riznichenko G. Yu., Lectures on mathematical models in biology, Part 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 232 pp.

[2] Ten V. V., Modelling and tool support of the bank's financial stability, Dr. Sci. (Econom.) Dissertation, Tambov, 2006, 350 pp. (in Russian)

[3] Sharkovskii A. N., “The coexistence of cycles for a continuous mapping of the line in itself”, Ukr. Mat. Zh., 16:1 (1964), 61–71 (in Russian)

[4] Li T.-Y., Yorke J. A., “Period three implies chaos”, The American Mathematical Monthly, 82:10 (1975), 985–992 | DOI | MR | Zbl

[5] Svirezhev Yu. M., Logofet D. O., Stability of biological communities, Nauka, Moscow, 1978, 352 pp. | MR

[6] Shapiro A. P., Luppov S. P., The recurrent equations in the theory of population biology, Nauka, Moscow, 1983, 133 pp. | MR

[7] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dynamics of one-dimensional mappings, Naukova dumka, Kiev, 1989, 216 pp. | MR

[8] Bobrovski D., Introduction to the theory of discrete-time dynamical systems, Regular and Chaotic Dynamics, Izhevsk, 2006, 360 pp. | MR

[9] Shiryaev A. N., Probability, Nauka, Moscow, 1989, 580 pp. | MR

[10] Masterkov Yu. V., Rodina L. I., “Sufficient conditions for the local controllability of systems with random parameters for an arbitrary number of system states”, Russian Mathematics, 52:3 (2008), 34–44 | DOI | MR | Zbl

[11] Rodina L. I., “On some probability models of dynamics of population growth”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, 109–124 (in Russian) | Zbl

[12] Rodina L. I., “About invariant sets of control systems with random coefficients”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 109–121 (in Russian) | Zbl

[13] Khas'minskii R. Z., “Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems”, Theory Probab. Appl., 12:1 (1967), 144–147 | DOI | MR | Zbl

[14] Feller W., An introduction to probability theory and its applications, v. 2, Wiley, 1971 | MR | Zbl