Weak asymptotic stability of control systems with impulsive actions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 68-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue investigating the conditions of positive invariance and asymptotic stability of a given set relative to a control system with impulsive actions. We consider the set $\mathfrak M\doteq\{(t,x)\in[t_0,+\infty)\times\mathbb R^n\colon x\in M(t)\}$, given by a function $t\to M(t)$ that is continuous in the Hausdorff metric, where the set $M(t)$ is nonempty and compact for each $t\in\mathbb R$. In terms of the Lyapunov functions and the Clarke derivative, we obtain conditions for weak positive invariance, weak uniform Lyapunov stability and weak asymptotic stability of the set $\mathfrak M$. Also we prove a comparison theorem for solutions of systems and equations with impulses the consequence of which is the conditions for existence of solutions of the system that asymptotically tends to zero. The obtained results are illustrated by the example of model for competition of two species exposed to impulse control at given times.
Keywords: control systems with impulsive actions, Lyapunov function, weak asymptotic stability.
@article{VUU_2016_26_1_a5,
     author = {Ya. Yu. Larina},
     title = {Weak asymptotic stability of control systems with impulsive actions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {68--78},
     year = {2016},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a5/}
}
TY  - JOUR
AU  - Ya. Yu. Larina
TI  - Weak asymptotic stability of control systems with impulsive actions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 68
EP  - 78
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a5/
LA  - ru
ID  - VUU_2016_26_1_a5
ER  - 
%0 Journal Article
%A Ya. Yu. Larina
%T Weak asymptotic stability of control systems with impulsive actions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 68-78
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a5/
%G ru
%F VUU_2016_26_1_a5
Ya. Yu. Larina. Weak asymptotic stability of control systems with impulsive actions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 68-78. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a5/

[1] Larina Ya. Yu., “Lyapunov functions and comparison theorems for control systems with impulsive actions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 51–59 (in Russian) | Zbl

[2] Samoilenko A. M., Perestyuk N. A., Impulsive differential equations, Vishcha shkola, Kiev, 1987, 287 pp.

[3] Panasenko E. A., Tonkov E. L., “Invariant and stably invariant sets for differential inclusions”, Proceedings of the Steklov Institute of Mathematics, 262, 2008, 194–212 | DOI | MR | Zbl

[4] Panasenko E. A., Tonkov E. L., “Extension of E. A. Barbashin's and N. N. Krasovskii's stability theorems to controlled dynamical systems”, Proceedings of the Steklov Institute of Mathematics, 268, suppl. 1, 2010, 204–221 | DOI | MR

[5] Rodina L. I., “Invariant and statistically weakly invariant sets of control systems”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2012, no. 2(40), 3–164 (in Russian) | Zbl

[6] Rodina L. I., “Estimation of statistical characteristics of attainability sets of controllable systems”, Russian Mathematics, 57:11 (2013), 17–27 | MR | Zbl

[7] Rodina L. I., Tonkov E. L., “Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center”, Nelin. Dinam., 5:2 (2009), 265–288 (in Russian)

[8] Filippov A. F., Differential equations with discontinuous right-hand side, Nauka, Moscow, 1985, 223 pp. | MR

[9] Clarke F., Optimization and nonsmooth analysis, Wiley, 1983 | MR | MR | Zbl

[10] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, Princeton University Press, New Jersey, 1960, 523 pp. | MR | Zbl

[11] Federer H., Geometric theory of measure, Nauka, Moscow, 1987, 761 pp. | MR

[12] Filippov V. V., Spaces of solutions of ordinary differential equations, Moscow State University, Moscow, 1993, 336 pp. | MR

[13] Blagodatskikh V. I., Filippov A. F., “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169, 1986, 199–259 | MR | Zbl | Zbl

[14] Demidovich B. P., Lectures on the mathematical stability theory, Nauka, Moscow, 1967, 472 pp. | MR

[15] Chaplygin S. A., A new method of approximate integration of differential equations, Gostekhizdat, Moscow–Leningrad, 1950, 102 pp.

[16] Riznichenko G. Yu., Lectures on the mathematical models in biology, Part 1, Regular and Chaotic Dynamics, Izhevsk, 2002, 236 pp.

[17] Kuzenkov O. A., Ryabova E. A., Mathematical modeling of processes of selection, Nizhnii Novgorod State University, Nizhnii Novgorod, 2007, 324 pp.