Multiple capture of rigidly coordinated evaders
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 46-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper deals with the problem of pursuit of a group of rigidly coordinated evaders in a nonstationary conflict-controlled process with equal opportunities $$ \begin{array}{llllllllcccc} P_i&:&\dot x_i=A(t)x_i+u_i,& u_i\in U(t),& x_i(t_0)=X_i^0,& i=1,2,\dots,n,\\ E_j&:&\dot y_j=A(t)y_j+v,& v\in U(t),& y_j(t_0)=Y_j^0,& j=1,2,\dots,m.\\ \end{array} $$ We say that a multiple capture in the problem of pursuit holds if the specified number of pursuers catch evaders, possibly at different times $$ x_\alpha(\tau_\alpha)=y_{j_\alpha}(\tau_\alpha),\quad\alpha\in\Lambda,\quad\Lambda\subset\{1,2,\dots,n\},\quad|\Lambda|=b\quad(n\geqslant b\geqslant 1),\quad j_\alpha\subset\{1,2,\dots,m\}. $$ The problem of nonstrict simultaneous multiple capture requires that capture moments coincide $$ x_\alpha (\tau)=y_{j_\alpha}(\tau),\quad\alpha\in\Lambda. $$ The problem of a simultaneous multiple capture requires that lowest capture moments coincide $$ x_\alpha(\tau)=y_{j_\alpha}(\tau),\quad x_\alpha(s)\ne y_{j_\alpha}(s),\quad s\in[t_0, \tau),\quad\alpha\in\Lambda. $$ In this paper we obtain necessary and sufficient conditions for simultaneous multiple capture and nonstrict simultaneous multiple capture.
Keywords: capture, multiple capture, simultaneous multiple capture, pursuit, differential games, conflict-controlled processes.
Mots-clés : evasion
@article{VUU_2016_26_1_a3,
     author = {A. I. Blagodatskikh},
     title = {Multiple capture of rigidly coordinated evaders},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {46--57},
     year = {2016},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a3/}
}
TY  - JOUR
AU  - A. I. Blagodatskikh
TI  - Multiple capture of rigidly coordinated evaders
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 46
EP  - 57
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a3/
LA  - ru
ID  - VUU_2016_26_1_a3
ER  - 
%0 Journal Article
%A A. I. Blagodatskikh
%T Multiple capture of rigidly coordinated evaders
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 46-57
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a3/
%G ru
%F VUU_2016_26_1_a3
A. I. Blagodatskikh. Multiple capture of rigidly coordinated evaders. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 46-57. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a3/

[1] Isaacs R., Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley and Sons, New York, 1965, 384 pp. | MR | MR | Zbl

[2] Pontryagin L. S., “A linear differential evasion game”, Proceedings of the Steklov Institute of Mathematics, 112, 1971, 27–60 | MR | Zbl

[3] Krasovskii N. N., Subbotin A. I., Positional differential games, Fizmatlit, Moscow, 1974, 456 pp. | MR

[4] Petrosyan L. A., Differential games of pursuit, Leningrad State University, Leningrad, 1977, 222 pp. | MR

[5] Chernous'ko F. L., Melikyan A. A., Control and search game problems, Nauka, Moscow, 1978, 272 pp. | MR

[6] Petrosyan L. A., “ ‘Life-line’ pursuit games with several players”, Izvestiya Akademii Nauk Armyanskoi SSR. Matematika, 1:5 (1966), 331–340 (in Russian) | MR

[7] Pshenichnyi B. N., “Simple pursuit by several objects”, Kibernetika, 3, 1976, 145–146 (in Russian)

[8] Grigorenko N. L., Mathematical methods of control over multiple dynamic processes, Moscow State University, Moscow, 1990, 197 pp.

[9] Chikrii A. A., Conflict controlled processes, Naukova Dumka, Kiev, 1992, 380 pp.

[10] Petrov N. N., “Multiple capture in Pontryagin's example with phase constraints”, Journal of Applied Mathematics and Mechanics, 61:5 (1997), 725–732 | DOI | MR | Zbl

[11] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009, 266 pp. | MR

[12] Blagodatskikh A. I., “Simultaneous multiple capture in a simple pursuit problem”, Journal of Applied Mathematics and Mechanics, 73:1 (2009), 36–40 | DOI | MR | Zbl

[13] Blagodatskikh A. I., “Simultaneous multiple capture in a conflict-controlled process”, Journal of Applied Mathematics and Mechanics, 77:3 (2013), 314–320 | DOI | MR | Zbl

[14] Demidovich B. P., Lectures on the mathematical stability theory, Nauka, Moscow, 1967, 472 pp. | MR