@article{VUU_2016_26_1_a2,
author = {Yu. A. Bel'skikh and V. I. Zhukovskii and S. P. Samsonov},
title = {Altruistic {(Berge)} equilibrium in the model of {Bertrand} duopoly},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {27--45},
year = {2016},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a2/}
}
TY - JOUR AU - Yu. A. Bel'skikh AU - V. I. Zhukovskii AU - S. P. Samsonov TI - Altruistic (Berge) equilibrium in the model of Bertrand duopoly JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 27 EP - 45 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a2/ LA - ru ID - VUU_2016_26_1_a2 ER -
%0 Journal Article %A Yu. A. Bel'skikh %A V. I. Zhukovskii %A S. P. Samsonov %T Altruistic (Berge) equilibrium in the model of Bertrand duopoly %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 27-45 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a2/ %G ru %F VUU_2016_26_1_a2
Yu. A. Bel'skikh; V. I. Zhukovskii; S. P. Samsonov. Altruistic (Berge) equilibrium in the model of Bertrand duopoly. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 27-45. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a2/
[1] Bertrand J., “Book review of theorie mathematique de la richesse sociale and of recherches sur les principes mathematiques de la theorie des richesses”, Journal des Savants, 67 (1883), 499–508
[2] Cournot A. A., Recherches sur les principes mathematiques de la theorie des richesses, Hachette, Paris, 1838
[3] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Natl. Acad. Sci. USA, 36:8 (1950), 48–49 | DOI | MR | Zbl
[4] Vaisman K. S., The Berge equilibrium, Abstract of Cand. Sci. (Phys.-Math.) Dissertation, St. Petersburg, 1995, 16 pp. (in Russian)
[5] Vaisman K. S., “The Berge equilibrium”: Zhukovskii V. I., Chikrii A. A., Linear-quadratic differential games, Section 3.2, Naukova Dumka, Kiev, 1994, 119–142 (in Russian)
[6] Zhukovskii V. I., Salukvadze M. E., Vaisman K. S., The Berge equilibrium, Preprint, Institute of Control Systems, Tbilisi, 1994, 28 pp.
[7] Berge C., Théorie genérale des jeux $n$ personnes, Gauthier-Villars, Paris, 1957, 114 pp. | MR
[8] Shubik M., “Review of C. Berge `General theory of $n$-person games' ”, Econometrica, 29:4 (1961), 821 | DOI
[9] Zhukovskii V. I., Kudryavtsev K. N., Gorbatov A. S., “The Berge equilibrium in Cournot's model of oligopoly”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 25:2 (2015), 147–156 (in Russian) | Zbl
[10] Colman A. M., Körner T. W., Musy O., Tazdait T., “Mutual support in games: some properties of Berge equilibria”, Journal of Mathematical Psychology, 55:2 (2011), 166–175 | DOI | MR | Zbl
[11] Mashchenko S. O., “The concept of Nash equilibrium and its development”, Zh. Obchysl. Prykl. Mat., 2012, no. 1, 40–61 (in Russian)
[12] Zhukovskiy V. I., Topchishvili A., Sachkov S. N., “Application of probability measures to the existence problem of Berge–Vaisman guaranteed equilibrium”, Model Assisted Statistics and Applications, 9:3 (2014), 223–239 | MR
[13] Zhukovskiy V. I., Sachkov S. N., “Bilanciamento confilitti friendly”, Italian Science Review, 18:9 (2014), 169–179
[14] Zhukovskii V. I., Sachkov S. N., “About an unusual but friendly method of balancing of conflicts”, International Independent Institute of Mathematics and Systems. Monthly Scientific Journal, 2014, no. 10, 61–64 (in Russian)
[15] Zhukovskiy V. I., Sachkov S. N., Gorbatov A. S., “Mathematical model of the ‘Golden rule’ ”, Science, Technology and Life–2014, Proceedings of the International Scientific Conference (Czech Republic, Karlovy Vary, 27–28 December 2014), 16–23
[16] Zhukovskii V. I., Chikrii A. A., Soldatova N. G., “The Berge equilibrium in the conflicts under uncertainty”, Proc. XII All-Russia Conf. on Control Problems, RCCP-2014, Inst. of Control Problems, Moscow, 2014, 8290–8302 (in Russian)