On the spectral set of a~linear discrete system with stable Lyapunov exponents
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 15-26
Voir la notice de l'article provenant de la source Math-Net.Ru
Let us fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ for a discrete time-varying linear system
$$
x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,
$$
where $A(\cdot)$ is completely bounded on $\mathbb Z$, i.e., $\sup_{m\in\mathbb Z}(\|A(m)\|+\|A^{-1}(m)\|)\infty$. The spectral set of this system, corresponding to a given class of perturbations, is a collection of all Lyapunov spectra (with multiplicities) for perturbed systems, when the perturbations range over this class all. The main attention is paid to the class $\mathcal R$ of perturbed systems
$$
y(m+1)=A(m)R(m)y(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n,
$$
where $R(\cdot)$ is completely bounded on $\mathbb Z$, as well as its subclasses $\mathcal R_\delta$, where $\sup_{m\in\mathbb Z}\|R(m)-E\|\delta$, $\delta>0$. For an original system with stable Lyapunov exponents, we prove that the spectral set $\lambda(\mathcal R)$ of class $\mathcal R$ coincides with the set of all ordered ascending sets of $n$ numbers. Moreover, for any $\Delta> 0$ there exists an $\ell=\ell(\Delta)>0$ such that for any $\delta\Delta$ the spectral set $\lambda(\mathcal R_{\ell\delta})$ contains the $\delta$-neighborhood of the Lyapunov spectrum of the unperturbed system.
Keywords:
discrete time-varying linear system, lyapunov exponents
Mots-clés : perturbations of coefficients.
Mots-clés : perturbations of coefficients.
@article{VUU_2016_26_1_a1,
author = {I. N. Banshchikova and S. N. Popova},
title = {On the spectral set of a~linear discrete system with stable {Lyapunov} exponents},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {15--26},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/}
}
TY - JOUR AU - I. N. Banshchikova AU - S. N. Popova TI - On the spectral set of a~linear discrete system with stable Lyapunov exponents JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2016 SP - 15 EP - 26 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/ LA - ru ID - VUU_2016_26_1_a1 ER -
%0 Journal Article %A I. N. Banshchikova %A S. N. Popova %T On the spectral set of a~linear discrete system with stable Lyapunov exponents %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2016 %P 15-26 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/ %G ru %F VUU_2016_26_1_a1
I. N. Banshchikova; S. N. Popova. On the spectral set of a~linear discrete system with stable Lyapunov exponents. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/