On the spectral set of a~linear discrete system with stable Lyapunov exponents
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 15-26

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ for a discrete time-varying linear system $$ x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, $$ where $A(\cdot)$ is completely bounded on $\mathbb Z$, i.e., $\sup_{m\in\mathbb Z}(\|A(m)\|+\|A^{-1}(m)\|)\infty$. The spectral set of this system, corresponding to a given class of perturbations, is a collection of all Lyapunov spectra (with multiplicities) for perturbed systems, when the perturbations range over this class all. The main attention is paid to the class $\mathcal R$ of perturbed systems $$ y(m+1)=A(m)R(m)y(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n, $$ where $R(\cdot)$ is completely bounded on $\mathbb Z$, as well as its subclasses $\mathcal R_\delta$, where $\sup_{m\in\mathbb Z}\|R(m)-E\|\delta$, $\delta>0$. For an original system with stable Lyapunov exponents, we prove that the spectral set $\lambda(\mathcal R)$ of class $\mathcal R$ coincides with the set of all ordered ascending sets of $n$ numbers. Moreover, for any $\Delta> 0$ there exists an $\ell=\ell(\Delta)>0$ such that for any $\delta\Delta$ the spectral set $\lambda(\mathcal R_{\ell\delta})$ contains the $\delta$-neighborhood of the Lyapunov spectrum of the unperturbed system.
Keywords: discrete time-varying linear system, lyapunov exponents
Mots-clés : perturbations of coefficients.
@article{VUU_2016_26_1_a1,
     author = {I. N. Banshchikova and S. N. Popova},
     title = {On the spectral set of a~linear discrete system with stable {Lyapunov} exponents},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/}
}
TY  - JOUR
AU  - I. N. Banshchikova
AU  - S. N. Popova
TI  - On the spectral set of a~linear discrete system with stable Lyapunov exponents
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 15
EP  - 26
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/
LA  - ru
ID  - VUU_2016_26_1_a1
ER  - 
%0 Journal Article
%A I. N. Banshchikova
%A S. N. Popova
%T On the spectral set of a~linear discrete system with stable Lyapunov exponents
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 15-26
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/
%G ru
%F VUU_2016_26_1_a1
I. N. Banshchikova; S. N. Popova. On the spectral set of a~linear discrete system with stable Lyapunov exponents. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/