On the spectral set of a linear discrete system with stable Lyapunov exponents
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 15-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let us fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ for a discrete time-varying linear system $$ x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, $$ where $A(\cdot)$ is completely bounded on $\mathbb Z$, i.e., $\sup_{m\in\mathbb Z}(\|A(m)\|+\|A^{-1}(m)\|)<\infty$. The spectral set of this system, corresponding to a given class of perturbations, is a collection of all Lyapunov spectra (with multiplicities) for perturbed systems, when the perturbations range over this class all. The main attention is paid to the class $\mathcal R$ of perturbed systems $$ y(m+1)=A(m)R(m)y(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n, $$ where $R(\cdot)$ is completely bounded on $\mathbb Z$, as well as its subclasses $\mathcal R_\delta$, where $\sup_{m\in\mathbb Z}\|R(m)-E\|<\delta$, $\delta>0$. For an original system with stable Lyapunov exponents, we prove that the spectral set $\lambda(\mathcal R)$ of class $\mathcal R$ coincides with the set of all ordered ascending sets of $n$ numbers. Moreover, for any $\Delta> 0$ there exists an $\ell=\ell(\Delta)>0$ such that for any $\delta<\Delta$ the spectral set $\lambda(\mathcal R_{\ell\delta})$ contains the $\delta$-neighborhood of the Lyapunov spectrum of the unperturbed system.
Keywords: discrete time-varying linear system, lyapunov exponents
Mots-clés : perturbations of coefficients.
@article{VUU_2016_26_1_a1,
     author = {I. N. Banshchikova and S. N. Popova},
     title = {On the spectral set of a~linear discrete system with stable {Lyapunov} exponents},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {15--26},
     year = {2016},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/}
}
TY  - JOUR
AU  - I. N. Banshchikova
AU  - S. N. Popova
TI  - On the spectral set of a linear discrete system with stable Lyapunov exponents
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 15
EP  - 26
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/
LA  - ru
ID  - VUU_2016_26_1_a1
ER  - 
%0 Journal Article
%A I. N. Banshchikova
%A S. N. Popova
%T On the spectral set of a linear discrete system with stable Lyapunov exponents
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 15-26
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/
%G ru
%F VUU_2016_26_1_a1
I. N. Banshchikova; S. N. Popova. On the spectral set of a linear discrete system with stable Lyapunov exponents. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a1/

[1] Demidovich V. B., “On a criterion of stability for difference equations”, Differ. Uravn., 5:7 (1969), 1247–1255 (in Russian) | Zbl

[2] Gaishun I. V., Discrete-time systems, Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, 2001, 400 pp.

[3] Izobov N. A., “Linear systems of ordinary differential equations”, Journal of Soviet Mathematics, 5:1 (1976), 46–96 | DOI | MR | Zbl | Zbl

[4] Vinograd R. E., “On the central characteristic exponent of a system of differential equations”, Mat. Sb. (N.S.), 42(84):2 (1957), 207–222 (in Russian) | MR | Zbl

[5] Millionshchikov V. M., “Proof of attainability of central exponents of linear systems”, Sib. Mat. Zh., 10:1 (1969), 99–104 (in Russian)

[6] Millionshchikov V. M., “Robust properties of linear systems of differential equations”, Differ. Uravn., 5:10 (1969), 1775–1784 (in Russian)

[7] Bylov B. F., Izobov N. A., “Necessary and sufficient conditions for stability of characteristic exponents of linear system”, Differ. Uravn., 5:10 (1969), 1794–1803 (in Russian) | MR | Zbl

[8] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents, Nauka, Moscow, 1966, 576 pp.