Properties of the value function in optimal control problems with infinite horizon
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article investigates properties of the value function of the optimal control problem on infinite horizon with an unlimited integrand index appearing in the quality functional with a discount factor. The estimate is derived for approximating the value function in a problem with the infinite horizon by levels of value functions in problems with lengthening finite horizons. The structure of the value function is identified basing on stationary value functions which depend only on phase variables. The description is given for the asymptotic growth of the value function generated by various types of the quality functional applied in economic and financial modeling: logarithmic, power, exponential, linear functions. The property of continuity is specified for the value function and estimates are deduced for the Hölder parameters of continuity. These estimates are needed for the development of grid algorithms designed for construction of the value function in optimal control problems with infinite horizon.
Keywords: optimal control, infinite horizon, value function, estimation of continuity modulus, asymptotic properties.
@article{VUU_2016_26_1_a0,
     author = {A. L. Bagno and A. M. Tarasyev},
     title = {Properties of the value function in optimal control problems with infinite horizon},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--14},
     year = {2016},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a0/}
}
TY  - JOUR
AU  - A. L. Bagno
AU  - A. M. Tarasyev
TI  - Properties of the value function in optimal control problems with infinite horizon
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2016
SP  - 3
EP  - 14
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a0/
LA  - ru
ID  - VUU_2016_26_1_a0
ER  - 
%0 Journal Article
%A A. L. Bagno
%A A. M. Tarasyev
%T Properties of the value function in optimal control problems with infinite horizon
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2016
%P 3-14
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a0/
%G ru
%F VUU_2016_26_1_a0
A. L. Bagno; A. M. Tarasyev. Properties of the value function in optimal control problems with infinite horizon. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 26 (2016) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/VUU_2016_26_1_a0/

[1] Capuzzo Dolcetta I. C., Ishii H., “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optimiz., 11:1 (1984), 161–181 | DOI | MR

[2] Nikol'skii M. S., “Continuity and the Lipschitz property of the Bellman function in some optimization problems on the semi-infinite interval $[0,+\infty)$”, Differential Equations, 38:11 (2002), 1599–1604 | DOI | MR

[3] Adiatulina R. A., Tarasyev A. M., “A differential game of unlimited duration”, J. Appl. Math. Mech., 51:4 (1987), 415–420 | DOI | MR | Zbl

[4] Intriligator M., Mathematical optimization methods and economic theory, Airis press, Moscow, 2002, 576 pp.

[5] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, Moscow, 1974, 456 pp. | MR

[6] Krushvits L., Financing and investments, Piter, St. Petersburg, 2000, 381 pp.

[7] Subbotin A. I., Minimax inequalities and Hamilton–Jacobi equations, Nauka, Moscow, 1991, 216 pp. | MR