Mots-clés : Puiseux series, bisingular perturbation.
@article{VUU_2015_25_4_a7,
author = {D. A. Tursunov and U. Z. Erkebaev},
title = {Asymptotics of the {Dirichlet} problem solution for a~bisingular perturbed equation in the ring},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {517--525},
year = {2015},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/}
}
TY - JOUR AU - D. A. Tursunov AU - U. Z. Erkebaev TI - Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 517 EP - 525 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/ LA - ru ID - VUU_2015_25_4_a7 ER -
%0 Journal Article %A D. A. Tursunov %A U. Z. Erkebaev %T Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 517-525 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/ %G ru %F VUU_2015_25_4_a7
D. A. Tursunov; U. Z. Erkebaev. Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 517-525. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/
[1] Il'in A. M., Matching of asymptotic expansions of solutions of boundary value problems, Nauka, Moscow, 1989, 336 pp. | MR
[2] Il'in A. M., Danilin A. R., Asymptotic methods in analysis, Fizmatlit, Moscow, 2009, 248 pp.
[3] Alymkulov K., “Method of boundary layer function to solve the boundary value problem for a singularly perturbed differential equation of the order two with a turning point”, Universal Journal of Applied Mathematics, 2:3 (2014), 119–124
[4] Alymkulov K., Khalmatov A. A., “A boundary function method for solving the model lighthill equation with a regular singular point”, Mathematical Notes, 92:5 (2012), 751–755 | DOI | DOI | MR | Zbl
[5] Alymkulov K., Asylbekov T. D., Dolbeeva S. F., “Generalization of the boundary function method for solving boundary-value problems for bisingularly perturbed second-order differential equations”, Mathematical Notes, 94:3 (2013), 451–454 | DOI | DOI | MR | Zbl
[6] Tursunov D. A., “Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2013, no. 1(21), 34–40 (in Russian)
[7] Tursunov D. A., “Asymptotic solutions of the bisingular perturbed elliptic equation. Case of a singular point on the boundary”, Bulletin of the Tomsk Polytechnic University, 324:2 (2014), 31–35 (in Russian)
[8] Tursunov D. A., Belekov K. J., “Asymptotic expansion of the solution of the Dirichlet problem for bisingular perturbed elliptic equations in domains with smooth boundaries”, Proceedings of V Congress of the Turkic World Mathematicians (Kyrgyzstan, Bulan-Sogottu, 5–7 June 2014), Kyrgyz Mathematical Society, Bishkek, 2014, 143–147
[9] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Nauka, Moscow, 1989, 336 pp. | MR