Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 517-525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper refers to the asymptotic behavior of the Dirichlet problem solution for a bisingular perturbed elliptic second-order equation with two independent variables in the ring. To construct the asymptotic expansion of the solution the authors apply the modified scheme of the method of boundary functions by Vishik–Lyusternik–Vasil'eva–Imanaliev. The proposed method differs from the matching method by the fact that growing features of the outer expansion are in fact removed from it and with the help of an auxiliary asymptotic series are placed entirely in the internal expansion, and from the classical method of boundary functions by the fact that boundary functions have power-law decrease, not exponential. An asymptotic expansion of the solution is a series of Puiseux. The resulting asymptotic expansion of the Dirichlet problem solution is justified by the maximum principle.
Keywords: formal asymptotic expansion, dirichlet problem, airy function, small parameter, method of boundary functions
Mots-clés : Puiseux series, bisingular perturbation.
@article{VUU_2015_25_4_a7,
     author = {D. A. Tursunov and U. Z. Erkebaev},
     title = {Asymptotics of the {Dirichlet} problem solution for a~bisingular perturbed equation in the ring},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {517--525},
     year = {2015},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/}
}
TY  - JOUR
AU  - D. A. Tursunov
AU  - U. Z. Erkebaev
TI  - Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2015
SP  - 517
EP  - 525
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/
LA  - ru
ID  - VUU_2015_25_4_a7
ER  - 
%0 Journal Article
%A D. A. Tursunov
%A U. Z. Erkebaev
%T Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2015
%P 517-525
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/
%G ru
%F VUU_2015_25_4_a7
D. A. Tursunov; U. Z. Erkebaev. Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 517-525. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a7/

[1] Il'in A. M., Matching of asymptotic expansions of solutions of boundary value problems, Nauka, Moscow, 1989, 336 pp. | MR

[2] Il'in A. M., Danilin A. R., Asymptotic methods in analysis, Fizmatlit, Moscow, 2009, 248 pp.

[3] Alymkulov K., “Method of boundary layer function to solve the boundary value problem for a singularly perturbed differential equation of the order two with a turning point”, Universal Journal of Applied Mathematics, 2:3 (2014), 119–124

[4] Alymkulov K., Khalmatov A. A., “A boundary function method for solving the model lighthill equation with a regular singular point”, Mathematical Notes, 92:5 (2012), 751–755 | DOI | DOI | MR | Zbl

[5] Alymkulov K., Asylbekov T. D., Dolbeeva S. F., “Generalization of the boundary function method for solving boundary-value problems for bisingularly perturbed second-order differential equations”, Mathematical Notes, 94:3 (2013), 451–454 | DOI | DOI | MR | Zbl

[6] Tursunov D. A., “Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2013, no. 1(21), 34–40 (in Russian)

[7] Tursunov D. A., “Asymptotic solutions of the bisingular perturbed elliptic equation. Case of a singular point on the boundary”, Bulletin of the Tomsk Polytechnic University, 324:2 (2014), 31–35 (in Russian)

[8] Tursunov D. A., Belekov K. J., “Asymptotic expansion of the solution of the Dirichlet problem for bisingular perturbed elliptic equations in domains with smooth boundaries”, Proceedings of V Congress of the Turkic World Mathematicians (Kyrgyzstan, Bulan-Sogottu, 5–7 June 2014), Kyrgyz Mathematical Society, Bishkek, 2014, 143–147

[9] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Nauka, Moscow, 1989, 336 pp. | MR