Mots-clés : convection, diffusion
@article{VUU_2015_25_4_a5,
author = {M. N. Nazarov},
title = {The application of theory of probability to the modelling of chemical kinetics systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {492--500},
year = {2015},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a5/}
}
TY - JOUR AU - M. N. Nazarov TI - The application of theory of probability to the modelling of chemical kinetics systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2015 SP - 492 EP - 500 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a5/ LA - ru ID - VUU_2015_25_4_a5 ER -
%0 Journal Article %A M. N. Nazarov %T The application of theory of probability to the modelling of chemical kinetics systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2015 %P 492-500 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a5/ %G ru %F VUU_2015_25_4_a5
M. N. Nazarov. The application of theory of probability to the modelling of chemical kinetics systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 25 (2015) no. 4, pp. 492-500. http://geodesic.mathdoc.fr/item/VUU_2015_25_4_a5/
[1] Kenneth A., Chemical kinetics, the study of reaction rates in solution, VCH Publishers, 1991, 496 pp.
[2] Emanuel' N. M., Knorre D. G., Course of chemical kinetics, Vysshaya shkola, Moscow, 1984, 463 pp.
[3] Aris R., The mathematical theory of diffusion and reaction in permeable catalysts, Clarendon Press, Oxford, 1975, 444 pp. | Zbl
[4] Nazarov M. N., “On the construction of correct mathematical model of chemical kinetics”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 65–73 (in Russian)
[5] Nazarov M. N., “New approaches to the analysis of the elementary reactions kinetics”, J. Sib. Fed. Univ. Math. Phys., 7:3 (2014), 373–382
[6] Nazarov M. N., “Generalization of coarse-grained models with introduction of three-dimensional space”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 4(25), 110–117 (in Russian) | DOI
[7] Nazarov M. N., “On alternative to partial differential equations for the modelling of reaction-diffusion systems”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 2, 35–47 (in Russian) | Zbl
[8] Nazarov M. N., “A new approach to the reaction-diffusion systems modelling”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, no. 4, 84–94 (in Russian) | Zbl
[9] Vanag V. K., “Waves and patterns in reaction-diffusion systems. Belousov–Zhabotinsky reaction in water-in-oil microemulsions”, Phys. Usp., 47 (2004), 923–941 | DOI | DOI
[10] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation oscillations and diffusion chaos in the Belousov reaction”, Computational Mathematics and Mathematical Physics, 51:8 (2011), 1307–1324 | DOI | MR | Zbl